Abstract

A compact imaging laser radar was constructed and tested to investigate phenomenological issues in targeting, especially cases involving imaging through obscurations such as foliage and camouflage netting. The laser radar employs a Nd:YAG microchip laser that operates at a wavelength of 1.06 µm and produces pulses of 1.2-ns duration at a 3-kHz rate. The detector is a commercial indium gallium arsenide avalanche photodiode. A single computer controls the scanning mirrors and performs the digitization of the returning signal at 2 giga samples/s. A detailed description of the laser radar is presented as well as results from field experiments that examined its range accuracy capability and its ability to image a target through camouflage. Results of data collected from deciduous tree lines are also discussed to characterize the presence and quantity of multiple returns.

© 2002 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978).
    [CrossRef] [PubMed]
  2. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar,” Appl. Opt. 21, 2275–2286 (1982).
    [CrossRef] [PubMed]
  3. H. Ahlberg, S. Lundqvist, B. Olsson, “CO2 laser long-path measurements of diffuse leakages from a petrochemical plant,” Appl. Opt. 24, 3924–3928 (1985).
    [CrossRef]
  4. A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
    [CrossRef] [PubMed]
  5. C. B. Carlisle, J. E. van der Laan, L. W. Carr, P. Adam, J.-P. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6200 (1995).
    [CrossRef] [PubMed]
  6. T. J. Kane, W. J. Kozlovsky, R. L. Byer, C. E. Byvik, “Coherent laser radar at 1.06 µm using Nd:YAG lasers,” Opt. Lett. 12, 239–241 (1987).
    [CrossRef] [PubMed]
  7. A. N. Dills, G. Anderson, R. J. Knise, “Holographic Raman/Rayleigh lidar for all-atmosphere thermal profiles,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 186–193 (2001).
  8. J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
  9. C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).
  10. B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
    [CrossRef]
  11. A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1991).
  12. R. W. Byren, “Laser rangefinders,” in The Infrared and Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich. and SPIE, Bellingham, Wash.1993).
  13. T. N. Dreishuh, L. L. Gurdev, D. V. Stoyanov, “Effect of pulse-shape uncertainty on the accuracy of deconvolved lidar profiles,” J. Opt. Soc. Am. A 12, 301–306 (1995).
    [CrossRef]
  14. Y. J. Park, W. S. Dho, H. J. Kong, “Deconvolution of long-pulse lidar signals with matrix formulation,” Appl. Opt. 36, 5158–5161 (1997).
    [CrossRef] [PubMed]
  15. C. W. Trussell, “3D imaging for Army applications,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 126–131 (2001).
  16. Q. Zheng, S. Der, H. Mahmoud, “Model-based target recognition in pulsed ladar imagery,” IEEE Trans. Image Process. 10, 565–572 (2001).
    [CrossRef]
  17. J. E. Nettleton, B. W. Schilling, D. N. Barr, J. S. Lei, “Monoblock laser for a low-cost, eyesafe, microlaser range finder,” Appl. Opt. 39, 2428–2432 (2000).
    [CrossRef]
  18. S. D. Setzler, P. A. Budni, E. P. Chicklis, “A high energy Q-switched erbium at 1.62 microns,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 309–311.
  19. T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.
  20. S. Masuda, S. Takahashi, T. Nose, S. Sato, H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36, 4772–4778 (1997).
    [CrossRef] [PubMed]

2001

Q. Zheng, S. Der, H. Mahmoud, “Model-based target recognition in pulsed ladar imagery,” IEEE Trans. Image Process. 10, 565–572 (2001).
[CrossRef]

2000

1997

1996

B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

1995

1992

1987

1985

1982

1978

Adam, P.

Ahlberg, H.

Allik, T. H.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).

Anderson, G.

A. N. Dills, G. Anderson, R. J. Knise, “Holographic Raman/Rayleigh lidar for all-atmosphere thermal profiles,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 186–193 (2001).

Barr, D. N.

Ben-David, A.

Budni, P. A.

S. D. Setzler, P. A. Budni, E. P. Chicklis, “A high energy Q-switched erbium at 1.62 microns,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 309–311.

Butendeich, R.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Byer, R. L.

Byren, R. W.

R. W. Byren, “Laser rangefinders,” in The Infrared and Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich. and SPIE, Bellingham, Wash.1993).

Byvik, C. E.

Carlisle, C. B.

Carr, L. W.

Chiaroni, J.-P.

Chicklis, E. P.

S. D. Setzler, P. A. Budni, E. P. Chicklis, “A high energy Q-switched erbium at 1.62 microns,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 309–311.

D’Amico, F. M.

DeFeo, W. E.

Der, S.

Q. Zheng, S. Der, H. Mahmoud, “Model-based target recognition in pulsed ladar imagery,” IEEE Trans. Image Process. 10, 565–572 (2001).
[CrossRef]

Dho, W. S.

Dills, A. N.

A. N. Dills, G. Anderson, R. J. Knise, “Holographic Raman/Rayleigh lidar for all-atmosphere thermal profiles,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 186–193 (2001).

Dreishuh, T. N.

Emery, S. L.

Gotoff, S. W.

Gurdev, L. L.

Hamlin, S. J.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).

Hetzler, J.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Hutchinson, J. A.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).

Ito, H.

Jack, M.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).

Jelalian, A. V.

A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1991).

Kane, T. J.

Kärtner, F. X.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Killinger, D. K.

Knise, R. J.

A. N. Dills, G. Anderson, R. J. Knise, “Holographic Raman/Rayleigh lidar for all-atmosphere thermal profiles,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 186–193 (2001).

Kong, H. J.

Kozlovsky, W. J.

Kremp, T.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Lebien, S. M.

C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).

Lei, J. S.

Lundqvist, S.

Mahmoud, H.

Q. Zheng, S. Der, H. Mahmoud, “Model-based target recognition in pulsed ladar imagery,” IEEE Trans. Image Process. 10, 565–572 (2001).
[CrossRef]

Masuda, S.

McCarthy, J. C.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).

Menyuk, N.

Morgner, U.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Murray, E. R.

Nellums, R. O.

C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).

Nettleton, J. E.

Nose, T.

Olsson, B.

Park, Y. J.

Ruff, W. C.

B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Sato, S.

Schibli, T. R.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Schilling, B. W.

Scholz, F.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Schwarz, J.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Schweizer, H.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Setzler, S. D.

S. D. Setzler, P. A. Budni, E. P. Chicklis, “A high energy Q-switched erbium at 1.62 microns,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 309–311.

Smithpeter, C. L.

C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).

Stann, B. L.

B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Stoyanov, D. V.

Studor, G.

C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).

Sztankay, Z. G.

B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Takahashi, S.

Trussell, C. W.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).

C. W. Trussell, “3D imaging for Army applications,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 126–131 (2001).

van der Laan, J. E.

Wegener, M.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Zheng, Q.

Q. Zheng, S. Der, H. Mahmoud, “Model-based target recognition in pulsed ladar imagery,” IEEE Trans. Image Process. 10, 565–572 (2001).
[CrossRef]

Appl. Opt.

E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar,” Appl. Opt. 21, 2275–2286 (1982).
[CrossRef] [PubMed]

H. Ahlberg, S. Lundqvist, B. Olsson, “CO2 laser long-path measurements of diffuse leakages from a petrochemical plant,” Appl. Opt. 24, 3924–3928 (1985).
[CrossRef]

A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
[CrossRef] [PubMed]

Y. J. Park, W. S. Dho, H. J. Kong, “Deconvolution of long-pulse lidar signals with matrix formulation,” Appl. Opt. 36, 5158–5161 (1997).
[CrossRef] [PubMed]

J. E. Nettleton, B. W. Schilling, D. N. Barr, J. S. Lei, “Monoblock laser for a low-cost, eyesafe, microlaser range finder,” Appl. Opt. 39, 2428–2432 (2000).
[CrossRef]

C. B. Carlisle, J. E. van der Laan, L. W. Carr, P. Adam, J.-P. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6200 (1995).
[CrossRef] [PubMed]

S. Masuda, S. Takahashi, T. Nose, S. Sato, H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36, 4772–4778 (1997).
[CrossRef] [PubMed]

IEEE Trans. Image Process.

Q. Zheng, S. Der, H. Mahmoud, “Model-based target recognition in pulsed ladar imagery,” IEEE Trans. Image Process. 10, 565–572 (2001).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Opt. Lett.

Other

A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1991).

R. W. Byren, “Laser rangefinders,” in The Infrared and Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich. and SPIE, Bellingham, Wash.1993).

C. W. Trussell, “3D imaging for Army applications,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 126–131 (2001).

S. D. Setzler, P. A. Budni, E. P. Chicklis, “A high energy Q-switched erbium at 1.62 microns,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 309–311.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

A. N. Dills, G. Anderson, R. J. Knise, “Holographic Raman/Rayleigh lidar for all-atmosphere thermal profiles,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 186–193 (2001).

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).

C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics