Abstract

A compact imaging laser radar was constructed and tested to investigate phenomenological issues in targeting, especially cases involving imaging through obscurations such as foliage and camouflage netting. The laser radar employs a Nd:YAG microchip laser that operates at a wavelength of 1.06 µm and produces pulses of 1.2-ns duration at a 3-kHz rate. The detector is a commercial indium gallium arsenide avalanche photodiode. A single computer controls the scanning mirrors and performs the digitization of the returning signal at 2 giga samples/s. A detailed description of the laser radar is presented as well as results from field experiments that examined its range accuracy capability and its ability to image a target through camouflage. Results of data collected from deciduous tree lines are also discussed to characterize the presence and quantity of multiple returns.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978).
    [CrossRef] [PubMed]
  2. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar,” Appl. Opt. 21, 2275–2286 (1982).
    [CrossRef] [PubMed]
  3. H. Ahlberg, S. Lundqvist, B. Olsson, “CO2 laser long-path measurements of diffuse leakages from a petrochemical plant,” Appl. Opt. 24, 3924–3928 (1985).
    [CrossRef]
  4. A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
    [CrossRef] [PubMed]
  5. C. B. Carlisle, J. E. van der Laan, L. W. Carr, P. Adam, J.-P. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6200 (1995).
    [CrossRef] [PubMed]
  6. T. J. Kane, W. J. Kozlovsky, R. L. Byer, C. E. Byvik, “Coherent laser radar at 1.06 µm using Nd:YAG lasers,” Opt. Lett. 12, 239–241 (1987).
    [CrossRef] [PubMed]
  7. A. N. Dills, G. Anderson, R. J. Knise, “Holographic Raman/Rayleigh lidar for all-atmosphere thermal profiles,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 186–193 (2001).
    [CrossRef]
  8. J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
    [CrossRef]
  9. C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).
    [CrossRef]
  10. B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
    [CrossRef]
  11. A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1991).
  12. R. W. Byren, “Laser rangefinders,” in The Infrared and Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich. and SPIE, Bellingham, Wash.1993).
  13. T. N. Dreishuh, L. L. Gurdev, D. V. Stoyanov, “Effect of pulse-shape uncertainty on the accuracy of deconvolved lidar profiles,” J. Opt. Soc. Am. A 12, 301–306 (1995).
    [CrossRef]
  14. Y. J. Park, W. S. Dho, H. J. Kong, “Deconvolution of long-pulse lidar signals with matrix formulation,” Appl. Opt. 36, 5158–5161 (1997).
    [CrossRef] [PubMed]
  15. C. W. Trussell, “3D imaging for Army applications,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 126–131 (2001).
    [CrossRef]
  16. Q. Zheng, S. Der, H. Mahmoud, “Model-based target recognition in pulsed ladar imagery,” IEEE Trans. Image Process. 10, 565–572 (2001).
    [CrossRef]
  17. J. E. Nettleton, B. W. Schilling, D. N. Barr, J. S. Lei, “Monoblock laser for a low-cost, eyesafe, microlaser range finder,” Appl. Opt. 39, 2428–2432 (2000).
    [CrossRef]
  18. S. D. Setzler, P. A. Budni, E. P. Chicklis, “A high energy Q-switched erbium at 1.62 microns,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 309–311.
  19. T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.
  20. S. Masuda, S. Takahashi, T. Nose, S. Sato, H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36, 4772–4778 (1997).
    [CrossRef] [PubMed]

2001 (1)

Q. Zheng, S. Der, H. Mahmoud, “Model-based target recognition in pulsed ladar imagery,” IEEE Trans. Image Process. 10, 565–572 (2001).
[CrossRef]

2000 (1)

1997 (2)

1996 (1)

B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

1995 (2)

1992 (1)

1987 (1)

1985 (1)

1982 (1)

1978 (1)

Adam, P.

Ahlberg, H.

Allik, T. H.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
[CrossRef]

Anderson, G.

A. N. Dills, G. Anderson, R. J. Knise, “Holographic Raman/Rayleigh lidar for all-atmosphere thermal profiles,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 186–193 (2001).
[CrossRef]

Barr, D. N.

Ben-David, A.

Budni, P. A.

S. D. Setzler, P. A. Budni, E. P. Chicklis, “A high energy Q-switched erbium at 1.62 microns,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 309–311.

Butendeich, R.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Byer, R. L.

Byren, R. W.

R. W. Byren, “Laser rangefinders,” in The Infrared and Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich. and SPIE, Bellingham, Wash.1993).

Byvik, C. E.

Carlisle, C. B.

Carr, L. W.

Chiaroni, J.-P.

Chicklis, E. P.

S. D. Setzler, P. A. Budni, E. P. Chicklis, “A high energy Q-switched erbium at 1.62 microns,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 309–311.

D’Amico, F. M.

DeFeo, W. E.

Der, S.

Q. Zheng, S. Der, H. Mahmoud, “Model-based target recognition in pulsed ladar imagery,” IEEE Trans. Image Process. 10, 565–572 (2001).
[CrossRef]

Dho, W. S.

Dills, A. N.

A. N. Dills, G. Anderson, R. J. Knise, “Holographic Raman/Rayleigh lidar for all-atmosphere thermal profiles,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 186–193 (2001).
[CrossRef]

Dreishuh, T. N.

Emery, S. L.

Gotoff, S. W.

Gurdev, L. L.

Hamlin, S. J.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
[CrossRef]

Hetzler, J.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Hutchinson, J. A.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
[CrossRef]

Ito, H.

Jack, M.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
[CrossRef]

Jelalian, A. V.

A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1991).

Kane, T. J.

Kärtner, F. X.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Killinger, D. K.

Knise, R. J.

A. N. Dills, G. Anderson, R. J. Knise, “Holographic Raman/Rayleigh lidar for all-atmosphere thermal profiles,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 186–193 (2001).
[CrossRef]

Kong, H. J.

Kozlovsky, W. J.

Kremp, T.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Lebien, S. M.

C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).
[CrossRef]

Lei, J. S.

Lundqvist, S.

Mahmoud, H.

Q. Zheng, S. Der, H. Mahmoud, “Model-based target recognition in pulsed ladar imagery,” IEEE Trans. Image Process. 10, 565–572 (2001).
[CrossRef]

Masuda, S.

McCarthy, J. C.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
[CrossRef]

Menyuk, N.

Morgner, U.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Murray, E. R.

Nellums, R. O.

C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).
[CrossRef]

Nettleton, J. E.

Nose, T.

Olsson, B.

Park, Y. J.

Ruff, W. C.

B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Sato, S.

Schibli, T. R.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Schilling, B. W.

Scholz, F.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Schwarz, J.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Schweizer, H.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Setzler, S. D.

S. D. Setzler, P. A. Budni, E. P. Chicklis, “A high energy Q-switched erbium at 1.62 microns,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 309–311.

Smithpeter, C. L.

C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).
[CrossRef]

Stann, B. L.

B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Stoyanov, D. V.

Studor, G.

C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).
[CrossRef]

Sztankay, Z. G.

B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Takahashi, S.

Trussell, C. W.

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
[CrossRef]

C. W. Trussell, “3D imaging for Army applications,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 126–131 (2001).
[CrossRef]

van der Laan, J. E.

Wegener, M.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

Zheng, Q.

Q. Zheng, S. Der, H. Mahmoud, “Model-based target recognition in pulsed ladar imagery,” IEEE Trans. Image Process. 10, 565–572 (2001).
[CrossRef]

Appl. Opt. (8)

E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar,” Appl. Opt. 21, 2275–2286 (1982).
[CrossRef] [PubMed]

H. Ahlberg, S. Lundqvist, B. Olsson, “CO2 laser long-path measurements of diffuse leakages from a petrochemical plant,” Appl. Opt. 24, 3924–3928 (1985).
[CrossRef]

A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
[CrossRef] [PubMed]

Y. J. Park, W. S. Dho, H. J. Kong, “Deconvolution of long-pulse lidar signals with matrix formulation,” Appl. Opt. 36, 5158–5161 (1997).
[CrossRef] [PubMed]

J. E. Nettleton, B. W. Schilling, D. N. Barr, J. S. Lei, “Monoblock laser for a low-cost, eyesafe, microlaser range finder,” Appl. Opt. 39, 2428–2432 (2000).
[CrossRef]

C. B. Carlisle, J. E. van der Laan, L. W. Carr, P. Adam, J.-P. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6200 (1995).
[CrossRef] [PubMed]

S. Masuda, S. Takahashi, T. Nose, S. Sato, H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36, 4772–4778 (1997).
[CrossRef] [PubMed]

IEEE Trans. Image Process. (1)

Q. Zheng, S. Der, H. Mahmoud, “Model-based target recognition in pulsed ladar imagery,” IEEE Trans. Image Process. 10, 565–572 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

B. L. Stann, W. C. Ruff, Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques,” Opt. Eng. 35, 3270–3278 (1996).
[CrossRef]

Opt. Lett. (1)

Other (8)

A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1991).

R. W. Byren, “Laser rangefinders,” in The Infrared and Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich. and SPIE, Bellingham, Wash.1993).

C. W. Trussell, “3D imaging for Army applications,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 126–131 (2001).
[CrossRef]

S. D. Setzler, P. A. Budni, E. P. Chicklis, “A high energy Q-switched erbium at 1.62 microns,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 309–311.

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 343–345.

A. N. Dills, G. Anderson, R. J. Knise, “Holographic Raman/Rayleigh lidar for all-atmosphere thermal profiles,” in Laser Radar and Technology Applications VI, G. W. Kamerman, ed., Proc. SPIE4377, 186–193 (2001).
[CrossRef]

J. A. Hutchinson, C. W. Trussell, T. H. Allik, S. J. Hamlin, J. C. McCarthy, M. Jack, “Multifunction laser radar II,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 248–253 (2000).
[CrossRef]

C. L. Smithpeter, R. O. Nellums, S. M. Lebien, G. Studor, “A miniature, high-resolution laser radar operating at video rates,” in Laser Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, V. V. Molebny, eds., Proc. SPIE4035, 279–286 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Plots showing typical return signals from different types of target: (a) single return, (b) double return, (c) multiple return.

Fig. 2
Fig. 2

Laser radar data can be displayed as a 2-D range-gated image.

Fig. 3
Fig. 3

Transceiver layout. LPF, long-pass filter; QWP, quarter-wave plate; BPF, bandpass filter; D/A, digital-to-analog; A/D, analog-to-digital.

Fig. 4
Fig. 4

Photograph of truck used in laser radar data collection.

Fig. 5
Fig. 5

Laser radar data showing intensity mapping of truck. The range gate is approximately 54–59 m.

Fig. 6
Fig. 6

Laser radar data showing range mapping of truck. The range gate is approximately 54–59 m.

Fig. 7
Fig. 7

Single range slice of the target board at 57.3 m.

Fig. 8
Fig. 8

Multiple-slice range map of the target board.

Fig. 9
Fig. 9

Range-gated intensity images extracted from a single laser radar acquisition. Ranges in meters are (a) 56.7–59.0, (b) 59.0–61.2, (c) 61.2–63.5, (d) 63.5–65.7, (e) 65.7–67.9, (f) 67.9–70.2.

Fig. 10
Fig. 10

Photograph of camouflage net and white truck.

Fig. 11
Fig. 11

Laser radar intensity data of truck behind heavy camouflage netting.

Fig. 12
Fig. 12

Laser radar range data of truck behind heavy camouflage netting.

Fig. 13
Fig. 13

Laser radar intensity data of truck without camouflage netting.

Fig. 14
Fig. 14

Laser radar range data of truck without camouflage netting.

Fig. 15
Fig. 15

Results of pixel counting in a selected range gate for the combined data.

Fig. 16
Fig. 16

Laser radar intensity data of truck behind heavy camouflage netting after four images are combined digitally.

Fig. 17
Fig. 17

Laser radar range data of truck behind heavy camouflage netting after four images are combined digitally.

Tables (1)

Tables Icon

Table 1 Return Pulse Statistics for the Data Set Shown in Fig. 9

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r=c2fd,
Iθ, ϕ=maxIIθ, ϕ, I2θ, ϕ,

Metrics