Abstract

The return signal of a noncoaxial lidar system with fiber-optic output is examined. The dependence of the overlap regions and the overlap factor of the system on the fiber diameter is calculated for several inclination angles between the laser beam and the optical receiver axes. The effect of central obstruction is included and both cases of Gaussian and quasi-Gaussian laser beam profiles are treated. The irradiance spatial distribution on the focal plane of the system is calculated and experimentally determined. Finally, an alignment procedure of the lidar system is described based on the comparison between the range-corrected lidar signal and the range-corrected exponentially attenuated Rayleigh backscattered coefficient.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Oceanic Technol. 17, 1469–1482 (2000).
    [CrossRef]
  2. P. D. W. Girolamo, P. F. Ambrico, A. Amodeo, A. Boselli, G. Pappalardo, N. Spinelli, “Aerosol observations by lidar in the nocturnal boundary layer,” Appl. Opt. 38, 4585–4595 (1999).
    [CrossRef]
  3. E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).
  4. P. Hägeli, D. G. Steyn, K. B. Strawbridge, “Spatial and temporal variability of mixed-layer depth and entrainment zone thickness,” Boundary-Layer Meteorol. 97, 47–71 (2000).
    [CrossRef]
  5. P. E. Raj, P. C. S. Devara, R. S. Maheskumar, G. Pandithurai, K. K. Dani, “Lidar measurements of aerosol column content in an urban nocturnal boundary layer,” Atmos. Res. 45, 201–216 (1997).
    [CrossRef]
  6. I. G. McKendry, J. Lundgren, “Tropospheric layering of ozone in regions of urbanized complex and/or coastal terrain: a review,” Prog. Phys. Geogr. 24, 329–354 (2000).
  7. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1984).
  8. J. Riegl, M. Bernhard, “Empfangsleistung in Abhängigkeit von der Zielentfernung bei optischen Kurzstrecken-Radargeräten,” Appl. Opt. 13, 931–936 (1974).
    [CrossRef] [PubMed]
  9. T. Halldorsson, J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
    [CrossRef] [PubMed]
  10. Y. Sasano, H. Shimizu, N. Takeuchi, M. Okuda, “Geometrical form factor in the laser radar equation: an experimental determination,” Appl. Opt. 18, 3908–3910 (1979).
    [CrossRef] [PubMed]
  11. H. Kuze, H. Kinjo, Y. Sakurada, N. Takeuchi, “Field-of-view dependence of lidar signals by use of Newtonian and Cassegrainian telescopes,” Appl. Opt. 37, 3128–3132 (1998).
    [CrossRef]
  12. R. Velotta, B. Bartoli, R. Capobianco, L. Fiorani, N. Spinelli, “Analysis of the receiver response in lidar measurements,” Appl. Opt. 37, 6999–7007 (1998).
    [CrossRef]
  13. U. Wandinger, A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41, 511–514 (2002).
    [CrossRef] [PubMed]
  14. J. Harms, W. Lahmann, C. Weitkamp, “Geometrical compression of lidar return signals,” Appl. Opt. 17, 1131–1135 (1978).
    [CrossRef] [PubMed]
  15. J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979).
    [CrossRef] [PubMed]
  16. J. R. Jenness, D. B. Lysak, C. R. Philbrick, “Design of a lidar receiver with fiber-optic output,” Appl. Opt. 36, 4278–4284 (1997).
    [CrossRef] [PubMed]
  17. A. Papayannis, G. Tsaknakis, G. Chourdakis, A. Serafetinides, “Compact mobile lidar system based on the LabVIEW code: applications in urban air pollution monitoring in Athens, Greece,” in Enviromental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schaefer, K. Weber, K. Weitkamp, J. P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 19–28 (1999).
    [CrossRef]
  18. R. K. Nubling, J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997).
    [CrossRef] [PubMed]
  19. Y-W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, H. Uyama, “Cyclic olefin polymer-coated silver hollow glass waveguides for the infrared,” Appl. Opt. 37, 7758–7762 (1998).
    [CrossRef]
  20. N. Anastasopoulou, C. Ziolek, A. Serafetinides, H. Lubatschowski, “Q-switched Er:YAG radiation transmission through fluoride glass fibers and dielectric-coated metallic hollow waveguides,” Opt. Commun. 186, 167–171 (2000).
    [CrossRef]
  21. S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Opt. 36, 9075–9082 (1997).
    [CrossRef]
  22. T. Abel, J. Hirsch, J. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
    [CrossRef] [PubMed]
  23. W. Koechner, Solid-State Laser Engineering, Vol. 1 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1999).
    [CrossRef]
  24. R. Borghi, M. Santarsiero, “M2 factor of Bessel–Gauss beams,” Opt. Lett. 22, 262–264 (1997).
    [CrossRef] [PubMed]
  25. U.S. 1974 Standard Atmosphere (U.S. GPOWashington, D.C., 1976), p. 227.

2002 (1)

2000 (4)

I. G. McKendry, J. Lundgren, “Tropospheric layering of ozone in regions of urbanized complex and/or coastal terrain: a review,” Prog. Phys. Geogr. 24, 329–354 (2000).

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Oceanic Technol. 17, 1469–1482 (2000).
[CrossRef]

N. Anastasopoulou, C. Ziolek, A. Serafetinides, H. Lubatschowski, “Q-switched Er:YAG radiation transmission through fluoride glass fibers and dielectric-coated metallic hollow waveguides,” Opt. Commun. 186, 167–171 (2000).
[CrossRef]

P. Hägeli, D. G. Steyn, K. B. Strawbridge, “Spatial and temporal variability of mixed-layer depth and entrainment zone thickness,” Boundary-Layer Meteorol. 97, 47–71 (2000).
[CrossRef]

1999 (1)

1998 (4)

1997 (5)

1994 (1)

1979 (2)

1978 (2)

1974 (1)

Abe, Y.

Abel, T.

Althausen, D.

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Oceanic Technol. 17, 1469–1482 (2000).
[CrossRef]

Ambrico, P. F.

Amodeo, A.

Anastasopoulou, N.

N. Anastasopoulou, C. Ziolek, A. Serafetinides, H. Lubatschowski, “Q-switched Er:YAG radiation transmission through fluoride glass fibers and dielectric-coated metallic hollow waveguides,” Opt. Commun. 186, 167–171 (2000).
[CrossRef]

Ansmann, A.

U. Wandinger, A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41, 511–514 (2002).
[CrossRef] [PubMed]

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Oceanic Technol. 17, 1469–1482 (2000).
[CrossRef]

Bartoli, B.

Bernhard, M.

Borghi, R.

Boselli, A.

Boutou, V.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

Capobianco, R.

Chourdakis, G.

A. Papayannis, G. Tsaknakis, G. Chourdakis, A. Serafetinides, “Compact mobile lidar system based on the LabVIEW code: applications in urban air pollution monitoring in Athens, Greece,” in Enviromental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schaefer, K. Weber, K. Weitkamp, J. P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 19–28 (1999).
[CrossRef]

Clauder, E.

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Oceanic Technol. 17, 1469–1482 (2000).
[CrossRef]

Dani, K. K.

P. E. Raj, P. C. S. Devara, R. S. Maheskumar, G. Pandithurai, K. K. Dani, “Lidar measurements of aerosol column content in an urban nocturnal boundary layer,” Atmos. Res. 45, 201–216 (1997).
[CrossRef]

de Saeger, E.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

Devara, P. C. S.

P. E. Raj, P. C. S. Devara, R. S. Maheskumar, G. Pandithurai, K. K. Dani, “Lidar measurements of aerosol column content in an urban nocturnal boundary layer,” Atmos. Res. 45, 201–216 (1997).
[CrossRef]

Diemer, S.

Fiorani, L.

Frejafon, E.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

Fuss, W.

Girolamo, P. D. W.

Hägeli, P.

P. Hägeli, D. G. Steyn, K. B. Strawbridge, “Spatial and temporal variability of mixed-layer depth and entrainment zone thickness,” Boundary-Layer Meteorol. 97, 47–71 (2000).
[CrossRef]

Haisch, M.

Halldorsson, T.

Harms, J.

Harrington, J.

Harrington, J. A.

Hering, P.

Hirsch, J.

Hube, H.

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Oceanic Technol. 17, 1469–1482 (2000).
[CrossRef]

Jenness, J. R.

Jung, R.

Kasparian, J.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

Kinjo, H.

Klein, S.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, Vol. 1 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1999).
[CrossRef]

Krämer, B.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

Kuze, H.

Lahmann, W.

Langerholc, J.

Leisner, T.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

Lubatschowski, H.

N. Anastasopoulou, C. Ziolek, A. Serafetinides, H. Lubatschowski, “Q-switched Er:YAG radiation transmission through fluoride glass fibers and dielectric-coated metallic hollow waveguides,” Opt. Commun. 186, 167–171 (2000).
[CrossRef]

Lundgren, J.

I. G. McKendry, J. Lundgren, “Tropospheric layering of ozone in regions of urbanized complex and/or coastal terrain: a review,” Prog. Phys. Geogr. 24, 329–354 (2000).

Lysak, D. B.

Maheskumar, R. S.

P. E. Raj, P. C. S. Devara, R. S. Maheskumar, G. Pandithurai, K. K. Dani, “Lidar measurements of aerosol column content in an urban nocturnal boundary layer,” Atmos. Res. 45, 201–216 (1997).
[CrossRef]

Matsuura, Y.

McKendry, I. G.

I. G. McKendry, J. Lundgren, “Tropospheric layering of ozone in regions of urbanized complex and/or coastal terrain: a review,” Prog. Phys. Geogr. 24, 329–354 (2000).

Measures, R. M.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1984).

Meister, J.

Miyagi, M.

Müller, D.

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Oceanic Technol. 17, 1469–1482 (2000).
[CrossRef]

Nubling, R. K.

Okuda, M.

Ottobrini, B.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

Pandithurai, G.

P. E. Raj, P. C. S. Devara, R. S. Maheskumar, G. Pandithurai, K. K. Dani, “Lidar measurements of aerosol column content in an urban nocturnal boundary layer,” Atmos. Res. 45, 201–216 (1997).
[CrossRef]

Papayannis, A.

A. Papayannis, G. Tsaknakis, G. Chourdakis, A. Serafetinides, “Compact mobile lidar system based on the LabVIEW code: applications in urban air pollution monitoring in Athens, Greece,” in Enviromental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schaefer, K. Weber, K. Weitkamp, J. P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 19–28 (1999).
[CrossRef]

Pappalardo, G.

Philbrick, C. R.

Rairoux, P.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

Raj, P. E.

P. E. Raj, P. C. S. Devara, R. S. Maheskumar, G. Pandithurai, K. K. Dani, “Lidar measurements of aerosol column content in an urban nocturnal boundary layer,” Atmos. Res. 45, 201–216 (1997).
[CrossRef]

Rambaldi, P.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

Riegl, J.

Sakurada, Y.

Santarsiero, M.

Sasano, Y.

Sato, S.

Serafetinides, A.

N. Anastasopoulou, C. Ziolek, A. Serafetinides, H. Lubatschowski, “Q-switched Er:YAG radiation transmission through fluoride glass fibers and dielectric-coated metallic hollow waveguides,” Opt. Commun. 186, 167–171 (2000).
[CrossRef]

A. Papayannis, G. Tsaknakis, G. Chourdakis, A. Serafetinides, “Compact mobile lidar system based on the LabVIEW code: applications in urban air pollution monitoring in Athens, Greece,” in Enviromental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schaefer, K. Weber, K. Weitkamp, J. P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 19–28 (1999).
[CrossRef]

Shi, Y-W.

Shimizu, H.

Spinelli, N.

Steyn, D. G.

P. Hägeli, D. G. Steyn, K. B. Strawbridge, “Spatial and temporal variability of mixed-layer depth and entrainment zone thickness,” Boundary-Layer Meteorol. 97, 47–71 (2000).
[CrossRef]

Strawbridge, K. B.

P. Hägeli, D. G. Steyn, K. B. Strawbridge, “Spatial and temporal variability of mixed-layer depth and entrainment zone thickness,” Boundary-Layer Meteorol. 97, 47–71 (2000).
[CrossRef]

Takeuchi, N.

Taniwaki, M.

Tsaknakis, G.

A. Papayannis, G. Tsaknakis, G. Chourdakis, A. Serafetinides, “Compact mobile lidar system based on the LabVIEW code: applications in urban air pollution monitoring in Athens, Greece,” in Enviromental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schaefer, K. Weber, K. Weitkamp, J. P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 19–28 (1999).
[CrossRef]

Ulbricht, M.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

Uyama, H.

Velotta, R.

Vezin, B.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

Wandinger, U.

U. Wandinger, A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41, 511–514 (2002).
[CrossRef] [PubMed]

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Oceanic Technol. 17, 1469–1482 (2000).
[CrossRef]

Wang, Y.

Weidauer, D.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

Weitkamp, C.

Wolf, J. P.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

Woste, L.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

Yu, J.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

Ziolek, C.

N. Anastasopoulou, C. Ziolek, A. Serafetinides, H. Lubatschowski, “Q-switched Er:YAG radiation transmission through fluoride glass fibers and dielectric-coated metallic hollow waveguides,” Opt. Commun. 186, 167–171 (2000).
[CrossRef]

Zörner, S.

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Oceanic Technol. 17, 1469–1482 (2000).
[CrossRef]

Appl. Opt. (13)

J. R. Jenness, D. B. Lysak, C. R. Philbrick, “Design of a lidar receiver with fiber-optic output,” Appl. Opt. 36, 4278–4284 (1997).
[CrossRef] [PubMed]

R. K. Nubling, J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997).
[CrossRef] [PubMed]

S. Diemer, J. Meister, R. Jung, S. Klein, M. Haisch, W. Fuss, P. Hering, “Liquid-core light guides for near-infrared applications,” Appl. Opt. 36, 9075–9082 (1997).
[CrossRef]

H. Kuze, H. Kinjo, Y. Sakurada, N. Takeuchi, “Field-of-view dependence of lidar signals by use of Newtonian and Cassegrainian telescopes,” Appl. Opt. 37, 3128–3132 (1998).
[CrossRef]

R. Velotta, B. Bartoli, R. Capobianco, L. Fiorani, N. Spinelli, “Analysis of the receiver response in lidar measurements,” Appl. Opt. 37, 6999–7007 (1998).
[CrossRef]

Y-W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, H. Uyama, “Cyclic olefin polymer-coated silver hollow glass waveguides for the infrared,” Appl. Opt. 37, 7758–7762 (1998).
[CrossRef]

P. D. W. Girolamo, P. F. Ambrico, A. Amodeo, A. Boselli, G. Pappalardo, N. Spinelli, “Aerosol observations by lidar in the nocturnal boundary layer,” Appl. Opt. 38, 4585–4595 (1999).
[CrossRef]

U. Wandinger, A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41, 511–514 (2002).
[CrossRef] [PubMed]

J. Riegl, M. Bernhard, “Empfangsleistung in Abhängigkeit von der Zielentfernung bei optischen Kurzstrecken-Radargeräten,” Appl. Opt. 13, 931–936 (1974).
[CrossRef] [PubMed]

T. Halldorsson, J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
[CrossRef] [PubMed]

J. Harms, W. Lahmann, C. Weitkamp, “Geometrical compression of lidar return signals,” Appl. Opt. 17, 1131–1135 (1978).
[CrossRef] [PubMed]

J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979).
[CrossRef] [PubMed]

Y. Sasano, H. Shimizu, N. Takeuchi, M. Okuda, “Geometrical form factor in the laser radar equation: an experimental determination,” Appl. Opt. 18, 3908–3910 (1979).
[CrossRef] [PubMed]

Atmos. Res. (1)

P. E. Raj, P. C. S. Devara, R. S. Maheskumar, G. Pandithurai, K. K. Dani, “Lidar measurements of aerosol column content in an urban nocturnal boundary layer,” Atmos. Res. 45, 201–216 (1997).
[CrossRef]

Boundary-Layer Meteorol. (1)

P. Hägeli, D. G. Steyn, K. B. Strawbridge, “Spatial and temporal variability of mixed-layer depth and entrainment zone thickness,” Boundary-Layer Meteorol. 97, 47–71 (2000).
[CrossRef]

Eur. Phys. J. D (1)

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Woste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. Phys. J. D 4, 231–238 (1998).

J. Atmos. Oceanic Technol. (1)

D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Oceanic Technol. 17, 1469–1482 (2000).
[CrossRef]

Opt. Commun. (1)

N. Anastasopoulou, C. Ziolek, A. Serafetinides, H. Lubatschowski, “Q-switched Er:YAG radiation transmission through fluoride glass fibers and dielectric-coated metallic hollow waveguides,” Opt. Commun. 186, 167–171 (2000).
[CrossRef]

Opt. Lett. (2)

Prog. Phys. Geogr. (1)

I. G. McKendry, J. Lundgren, “Tropospheric layering of ozone in regions of urbanized complex and/or coastal terrain: a review,” Prog. Phys. Geogr. 24, 329–354 (2000).

Other (4)

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1984).

W. Koechner, Solid-State Laser Engineering, Vol. 1 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1999).
[CrossRef]

U.S. 1974 Standard Atmosphere (U.S. GPOWashington, D.C., 1976), p. 227.

A. Papayannis, G. Tsaknakis, G. Chourdakis, A. Serafetinides, “Compact mobile lidar system based on the LabVIEW code: applications in urban air pollution monitoring in Athens, Greece,” in Enviromental Sensing and Applications, M. Carleer, M. Hilton, T. Lamp, R. Reuter, G. M. Russwurm, K. Schaefer, K. Weber, K. Weitkamp, J. P. Wolf, L. Woppowa, eds., Proc. SPIE3821, 19–28 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup of the noncoaxial lidar system with a fiber-optic output.

Fig. 2
Fig. 2

(a) Distance z 1 where overlap starts and (b) distance z 2 where total overlap begins for a lidar system as a function of inclination angle δ for different values of the fiber diameter (0.5–3.0 mm).

Fig. 3
Fig. 3

Overlap factors O(z) as a function of range for different values of the fiber diameter (0.5–3.0 mm) for a lidar system with inclination angles δ of (a) 0 mrad and (b) 2 mrad.

Fig. 4
Fig. 4

Overlap factors O(z) as a function of range for various values of the M 2 factor of the laser beam for a lidar system with inclination angles δ of (a) 0 mrad and (b) 2 mrad. The fiber core diameter D f = 2 mm.

Fig. 5
Fig. 5

Irradiance in the focal plane of a 2-mm fiber. The center of the fiber is located at (x = 0, y = 0 mm). Three groups of curves are presented. The first group to the right represents the irradiance for system inclination angle δ = 0 mrad, the second for δ = 1.5 mrad, and the third for δ = 3.0 mrad. The solid, dashed, and dotted curves correspond to irradiances from short (0.5 km), medium (2.0 km), and far (10 km) distances, respectively.

Fig. 6
Fig. 6

Two-dimensional representation of the spatial irradiance in the focal plane. The dashed circle represents the fiber cross section and the gray-scale circles represents the areas illuminated by the return signals from 100, 200, 300, 500, 1000, and 3000 m, respectively.

Fig. 7
Fig. 7

Total power received by the detector as a function of range. Inclination angle δ varies from 0 to 4 mrad. The fiber core diameter D f = 2 mm. The thick curve corresponds to zero inclination and exhibits the strongest far-range signal.

Fig. 8
Fig. 8

Fine alignment procedure by comparison of the RCS with the Rayleigh backscattering coefficient for (a) a cloud-free atmosphere with low aerosol loading, (b) a Saharan dust event that occurred over Athens on 18 April 2001, (c) a misaligned optical system (deviation from parallelism is 0.5 mrad).

Fig. 9
Fig. 9

Raw lidar signal received as a function of range for different values of fiber displacement from infinity (0–8 mm).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Pz=Pocτ2 βzAtelOz1z2exp-2 0z az*dz*,
FOV=Dff=3.33 mrad,
f-numbertel = f/D = 2.
N.A.f=nf2-nc21/2,
f-numbertel = 0.5 1/N.A.f2 - 11/2.
κ1rd3, κ1R.
wz=w01+λzπw0221/2,
rt=rm+Df2fz.
dz=d0-δz,
wz=w01+M2λzπw0221/2.
Ifxf, yf, z=P0cτ2 βz1f2exp-2 0z az*dz*×2πw2zAexp×-2 xo*2+yo*-dz2w2zdA*.
Pz=A Ixf, yf, zdA,

Metrics