Abstract

System-level packaging is one of the critical issues that need to be addressed for free space optical interconnections (FSOI) to become useful in desktop systems. The performance of FSOI, e.g., in terms of system bit-error rate, is greatly affected by misalignments in the optical system. Therefore tolerancing, i.e., the ability to analyze and predict the effects of misalignments in the system, is of prime importance to system designers. We introduce an approach in which we study the effects of optical misalignments and other tolerance factors using statistical methods. We use Monte Carlo simulations, design of the experiments, and regression techniques to fit a polynomial equation that expresses the relationship between the system performance and the tolerance factors. This prediction model can be used for design, cost optimization, and quality control purposes. In addition, we perform a sensitivity analysis to determine those tolerance variables that have the greatest effect on system performance.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between electrical and free-space optical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
    [CrossRef] [PubMed]
  2. M. R. Feldman, C. C. Guest, T. J. Drabik, S. C. Esener, “Comparison between electrical and free-space optical interconnects for fine grain processor arrays based on connection density capabilities,” Appl. Opt. 28, 3820–3829 (1989).
    [CrossRef] [PubMed]
  3. F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks.” J. Lightwave Technol. 9, 1674–1692 (1991).
    [CrossRef]
  4. A. V. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, “Grain-size consideration for opto-electronic multistage interconnection network,” Appl. Opt., 31, 5480–5507 (1992).
    [CrossRef] [PubMed]
  5. S. Patra, J. Ma, V. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,”Optical Engineering, May1994, Vol. 33, No.5, 1561
  6. D. Zaleta, S. Patra, V. Ozguz, J. Ma, S. H. Lee, “Tolerancing of board-level-free-space optical interconnects,” Appl. Opt. 35, 1317–13271996.
    [CrossRef] [PubMed]
  7. A. Krishnamoorthy, D. A. B. Miller, “Scaling opto-electronic-VLSI circuits into 21st century: a technology roadmap,” IEEE JST in Quant. El.2, 55–76 (1996).
    [CrossRef]
  8. V. N. Morozov, L. Yung-Cheng, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems packaging,” Optical Engineering 35, 2034–2044 (1996).
    [CrossRef]
  9. D. A. B. Miller, “Physical reasons for optical interconnection,” Intl. J. Optoelectronics. 11, 155–168 (1997).
  10. G. Yayla, P. Marchand, S. Esener, “Speed and energy analysis of digital interconnections: Comparison of on-chip, off-chip, and free-space technologies, Appl. Opt. 37, 205–227 (1998).
    [CrossRef]
  11. M. A. Neifeld, R. K. Kostuk, “Error correction for free-space optical interconnects: space-time resource optimization,” Appl. Opt. 37, 296–307 (1998).
    [CrossRef]
  12. W. L. Hendrick, N. S. F. Ozkan, P. J. Marchand, S. C. Esener, “A Monte Carlo simulation for tolerancing microbeam free-space optical interconnects,” in Optics in Computing, of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 133–135.
  13. X. Zheng, P. J. Marchand, D. Huang, O. Kibar, N. S. F. Ozkan, S. C. Esener, “Optomechanical design and characterization of a printed-circuit-board-based free-space optical interconnect package,” Appl. Opt. 38, 5631–5640 (1999).
    [CrossRef]
  14. V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
    [CrossRef]
  15. W. L. Hendrick, “Design, fabrication, and packaging of free space optical interconnects,” Ph.D. dissertation, (University of California, San Diego, Calif., 2000)
  16. M. Naruse, M. Ishikawa, “Analysis and characterization of alignment for free-space optical interconnects based on singular-value decomposition,” Appl. Opt. 39, 293–301 (2000).
    [CrossRef]
  17. F. Lacroix, M. Chateauneuf, X. Xue, A. G. Kirk, “Experimental and numerical analyses of misalignment tolerances in free-space optical interconnects,” Appl. Opt. 39, 704–713 (2000).
    [CrossRef]
  18. F. Lacroix, A. G. Kirk, “Tolerance stackup effects in free-space optical interconnects,” Appl. Opt. 40, 29, 5240–5247 (2001).
    [CrossRef]
  19. B. R. Frieden, Probability, Statistical Optics, and Data Testing, 3rd ed., (Springer, New York, 2001).
    [CrossRef]
  20. Ron C. Mittelhammer, Mathematical Statistics for Economics and Business (Springer, New York, 1996).
    [CrossRef]
  21. J. Neter, M. H. Kutner, C. J. Nachtsheim, W. Wasserman, Applied Linear Statistical Models (Mc Graw-Hill, New York, 1996).
  22. R. L. Mason, R. F. Gunst, J. L. Hess, Statistical Design and Analysis of Experiments (John Wiley and Sons, New York, 1989).
  23. L. L. Lapin, Quantitative Methods for Business Decisions (Harcourt Brace Jovanovich, Inc., San Diego, Calif., 1981).
  24. G. E. P. Box, W. G. Hunter, J. S. Hunter, Statistics for Experimenters (John Wiley and Sons, New York, 1978).
  25. R. H. Myers, Response Surface Methodology (Allyn and Bacon, Inc., Boston, 1971).
  26. W. Mendenhall, Introduction to Linear Models and the Design and Analysis of Experiments (Wadsworth Publishing Co., Belmont, Calif., 1968).
  27. N. R. Draper, H. Smith, Applied Regression Analysis (John Wiley and Sons, Inc.New York, 1966).
  28. D. R. Cox, Planning of Experiments (John Wiley and Sons, New York, 1966).
  29. O. L. Davies, ed., The Design and Analysis of Industrial Experiments (Hafner Publishing Co., New York, 1963).
  30. M. Sasieni, A. Yaspan, L. Freidmen, Operations Research: Methods and Problems (John Wiley and Sons, Inc., New York, 1959).
  31. W. G. Cochran, G. M. Cox, Experimental Designs (John Wiley and Sons, New York, 1957).

2001 (1)

F. Lacroix, A. G. Kirk, “Tolerance stackup effects in free-space optical interconnects,” Appl. Opt. 40, 29, 5240–5247 (2001).
[CrossRef]

2000 (2)

1999 (2)

X. Zheng, P. J. Marchand, D. Huang, O. Kibar, N. S. F. Ozkan, S. C. Esener, “Optomechanical design and characterization of a printed-circuit-board-based free-space optical interconnect package,” Appl. Opt. 38, 5631–5640 (1999).
[CrossRef]

V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
[CrossRef]

1998 (2)

1997 (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” Intl. J. Optoelectronics. 11, 155–168 (1997).

1996 (2)

V. N. Morozov, L. Yung-Cheng, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems packaging,” Optical Engineering 35, 2034–2044 (1996).
[CrossRef]

D. Zaleta, S. Patra, V. Ozguz, J. Ma, S. H. Lee, “Tolerancing of board-level-free-space optical interconnects,” Appl. Opt. 35, 1317–13271996.
[CrossRef] [PubMed]

1994 (1)

S. Patra, J. Ma, V. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,”Optical Engineering, May1994, Vol. 33, No.5, 1561

1992 (1)

1991 (1)

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks.” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

1989 (1)

1988 (1)

Baets, R.

V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
[CrossRef]

Baukens, V.

V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
[CrossRef]

Bockstaele, R.

V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
[CrossRef]

Box, G. E. P.

G. E. P. Box, W. G. Hunter, J. S. Hunter, Statistics for Experimenters (John Wiley and Sons, New York, 1978).

Chateauneuf, M.

Cochran, W. G.

W. G. Cochran, G. M. Cox, Experimental Designs (John Wiley and Sons, New York, 1957).

Cox, D. R.

D. R. Cox, Planning of Experiments (John Wiley and Sons, New York, 1966).

Cox, G. M.

W. G. Cochran, G. M. Cox, Experimental Designs (John Wiley and Sons, New York, 1957).

Dhoedt, B.

V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
[CrossRef]

Drabik, T. J.

Draper, N. R.

N. R. Draper, H. Smith, Applied Regression Analysis (John Wiley and Sons, Inc.New York, 1966).

Esener, S.

Esener, S. C.

Feldman, M. R.

Freidmen, L.

M. Sasieni, A. Yaspan, L. Freidmen, Operations Research: Methods and Problems (John Wiley and Sons, Inc., New York, 1959).

Frieden, B. R.

B. R. Frieden, Probability, Statistical Optics, and Data Testing, 3rd ed., (Springer, New York, 2001).
[CrossRef]

Guest, C. C.

Gunst, R. F.

R. L. Mason, R. F. Gunst, J. L. Hess, Statistical Design and Analysis of Experiments (John Wiley and Sons, New York, 1989).

Hendrick, W. L.

W. L. Hendrick, “Design, fabrication, and packaging of free space optical interconnects,” Ph.D. dissertation, (University of California, San Diego, Calif., 2000)

W. L. Hendrick, N. S. F. Ozkan, P. J. Marchand, S. C. Esener, “A Monte Carlo simulation for tolerancing microbeam free-space optical interconnects,” in Optics in Computing, of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 133–135.

Hess, J. L.

R. L. Mason, R. F. Gunst, J. L. Hess, Statistical Design and Analysis of Experiments (John Wiley and Sons, New York, 1989).

Huang, D.

Hunter, J. S.

G. E. P. Box, W. G. Hunter, J. S. Hunter, Statistics for Experimenters (John Wiley and Sons, New York, 1978).

Hunter, W. G.

G. E. P. Box, W. G. Hunter, J. S. Hunter, Statistics for Experimenters (John Wiley and Sons, New York, 1978).

Ishikawa, M.

Kiamilev, F.

A. V. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, “Grain-size consideration for opto-electronic multistage interconnection network,” Appl. Opt., 31, 5480–5507 (1992).
[CrossRef] [PubMed]

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks.” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

Kibar, O.

Kirk, A. G.

Kostuk, R. K.

Krishnamoorthy, A.

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks.” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

A. Krishnamoorthy, D. A. B. Miller, “Scaling opto-electronic-VLSI circuits into 21st century: a technology roadmap,” IEEE JST in Quant. El.2, 55–76 (1996).
[CrossRef]

Krishnamoorthy, A. V.

Kufner, M.

V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
[CrossRef]

Kufner, S.

V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
[CrossRef]

Kutner, M. H.

J. Neter, M. H. Kutner, C. J. Nachtsheim, W. Wasserman, Applied Linear Statistical Models (Mc Graw-Hill, New York, 1996).

Lacroix, F.

Lapin, L. L.

L. L. Lapin, Quantitative Methods for Business Decisions (Harcourt Brace Jovanovich, Inc., San Diego, Calif., 1981).

Lee, S. H.

D. Zaleta, S. Patra, V. Ozguz, J. Ma, S. H. Lee, “Tolerancing of board-level-free-space optical interconnects,” Appl. Opt. 35, 1317–13271996.
[CrossRef] [PubMed]

S. Patra, J. Ma, V. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,”Optical Engineering, May1994, Vol. 33, No.5, 1561

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks.” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between electrical and free-space optical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
[CrossRef] [PubMed]

Ma, J.

D. Zaleta, S. Patra, V. Ozguz, J. Ma, S. H. Lee, “Tolerancing of board-level-free-space optical interconnects,” Appl. Opt. 35, 1317–13271996.
[CrossRef] [PubMed]

S. Patra, J. Ma, V. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,”Optical Engineering, May1994, Vol. 33, No.5, 1561

Marchand, P.

Marchand, P. J.

X. Zheng, P. J. Marchand, D. Huang, O. Kibar, N. S. F. Ozkan, S. C. Esener, “Optomechanical design and characterization of a printed-circuit-board-based free-space optical interconnect package,” Appl. Opt. 38, 5631–5640 (1999).
[CrossRef]

W. L. Hendrick, N. S. F. Ozkan, P. J. Marchand, S. C. Esener, “A Monte Carlo simulation for tolerancing microbeam free-space optical interconnects,” in Optics in Computing, of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 133–135.

Mason, R. L.

R. L. Mason, R. F. Gunst, J. L. Hess, Statistical Design and Analysis of Experiments (John Wiley and Sons, New York, 1989).

McLaren, T. S.

V. N. Morozov, L. Yung-Cheng, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems packaging,” Optical Engineering 35, 2034–2044 (1996).
[CrossRef]

Mendenhall, W.

W. Mendenhall, Introduction to Linear Models and the Design and Analysis of Experiments (Wadsworth Publishing Co., Belmont, Calif., 1968).

Miller, D. A. B.

D. A. B. Miller, “Physical reasons for optical interconnection,” Intl. J. Optoelectronics. 11, 155–168 (1997).

A. Krishnamoorthy, D. A. B. Miller, “Scaling opto-electronic-VLSI circuits into 21st century: a technology roadmap,” IEEE JST in Quant. El.2, 55–76 (1996).
[CrossRef]

Mittelhammer, Ron C.

Ron C. Mittelhammer, Mathematical Statistics for Economics and Business (Springer, New York, 1996).
[CrossRef]

Morozov, V. N.

V. N. Morozov, L. Yung-Cheng, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems packaging,” Optical Engineering 35, 2034–2044 (1996).
[CrossRef]

Myers, R. H.

R. H. Myers, Response Surface Methodology (Allyn and Bacon, Inc., Boston, 1971).

Nachtsheim, C. J.

J. Neter, M. H. Kutner, C. J. Nachtsheim, W. Wasserman, Applied Linear Statistical Models (Mc Graw-Hill, New York, 1996).

Naruse, M.

Neff, J. A.

V. N. Morozov, L. Yung-Cheng, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems packaging,” Optical Engineering 35, 2034–2044 (1996).
[CrossRef]

Neifeld, M. A.

Neter, J.

J. Neter, M. H. Kutner, C. J. Nachtsheim, W. Wasserman, Applied Linear Statistical Models (Mc Graw-Hill, New York, 1996).

O’Brien, D.

V. N. Morozov, L. Yung-Cheng, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems packaging,” Optical Engineering 35, 2034–2044 (1996).
[CrossRef]

Ottevaere, H.

V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
[CrossRef]

Ozguz, V.

D. Zaleta, S. Patra, V. Ozguz, J. Ma, S. H. Lee, “Tolerancing of board-level-free-space optical interconnects,” Appl. Opt. 35, 1317–13271996.
[CrossRef] [PubMed]

S. Patra, J. Ma, V. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,”Optical Engineering, May1994, Vol. 33, No.5, 1561

Ozkan, N. S. F.

X. Zheng, P. J. Marchand, D. Huang, O. Kibar, N. S. F. Ozkan, S. C. Esener, “Optomechanical design and characterization of a printed-circuit-board-based free-space optical interconnect package,” Appl. Opt. 38, 5631–5640 (1999).
[CrossRef]

W. L. Hendrick, N. S. F. Ozkan, P. J. Marchand, S. C. Esener, “A Monte Carlo simulation for tolerancing microbeam free-space optical interconnects,” in Optics in Computing, of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 133–135.

Patra, S.

D. Zaleta, S. Patra, V. Ozguz, J. Ma, S. H. Lee, “Tolerancing of board-level-free-space optical interconnects,” Appl. Opt. 35, 1317–13271996.
[CrossRef] [PubMed]

S. Patra, J. Ma, V. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,”Optical Engineering, May1994, Vol. 33, No.5, 1561

Sasieni, M.

M. Sasieni, A. Yaspan, L. Freidmen, Operations Research: Methods and Problems (John Wiley and Sons, Inc., New York, 1959).

Smith, H.

N. R. Draper, H. Smith, Applied Regression Analysis (John Wiley and Sons, Inc.New York, 1966).

Thienpont, H.

V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
[CrossRef]

Tuteleers, P.

V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
[CrossRef]

Urquhart, K. S.

Van Hove, A.

V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
[CrossRef]

Veretennicoff, I.

V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
[CrossRef]

Verschaffelt, G.

V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
[CrossRef]

Vynck, P.

V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
[CrossRef]

Wasserman, W.

J. Neter, M. H. Kutner, C. J. Nachtsheim, W. Wasserman, Applied Linear Statistical Models (Mc Graw-Hill, New York, 1996).

Xue, X.

Yaspan, A.

M. Sasieni, A. Yaspan, L. Freidmen, Operations Research: Methods and Problems (John Wiley and Sons, Inc., New York, 1959).

Yayla, G.

Yung-Cheng, L.

V. N. Morozov, L. Yung-Cheng, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems packaging,” Optical Engineering 35, 2034–2044 (1996).
[CrossRef]

Zaleta, D.

Zheng, X.

Zhou, H.

V. N. Morozov, L. Yung-Cheng, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems packaging,” Optical Engineering 35, 2034–2044 (1996).
[CrossRef]

Appl. Opt. (10)

F. Lacroix, A. G. Kirk, “Tolerance stackup effects in free-space optical interconnects,” Appl. Opt. 40, 29, 5240–5247 (2001).
[CrossRef]

M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between electrical and free-space optical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
[CrossRef] [PubMed]

M. R. Feldman, C. C. Guest, T. J. Drabik, S. C. Esener, “Comparison between electrical and free-space optical interconnects for fine grain processor arrays based on connection density capabilities,” Appl. Opt. 28, 3820–3829 (1989).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, “Grain-size consideration for opto-electronic multistage interconnection network,” Appl. Opt., 31, 5480–5507 (1992).
[CrossRef] [PubMed]

X. Zheng, P. J. Marchand, D. Huang, O. Kibar, N. S. F. Ozkan, S. C. Esener, “Optomechanical design and characterization of a printed-circuit-board-based free-space optical interconnect package,” Appl. Opt. 38, 5631–5640 (1999).
[CrossRef]

M. Naruse, M. Ishikawa, “Analysis and characterization of alignment for free-space optical interconnects based on singular-value decomposition,” Appl. Opt. 39, 293–301 (2000).
[CrossRef]

F. Lacroix, M. Chateauneuf, X. Xue, A. G. Kirk, “Experimental and numerical analyses of misalignment tolerances in free-space optical interconnects,” Appl. Opt. 39, 704–713 (2000).
[CrossRef]

D. Zaleta, S. Patra, V. Ozguz, J. Ma, S. H. Lee, “Tolerancing of board-level-free-space optical interconnects,” Appl. Opt. 35, 1317–13271996.
[CrossRef] [PubMed]

G. Yayla, P. Marchand, S. Esener, “Speed and energy analysis of digital interconnections: Comparison of on-chip, off-chip, and free-space technologies, Appl. Opt. 37, 205–227 (1998).
[CrossRef]

M. A. Neifeld, R. K. Kostuk, “Error correction for free-space optical interconnects: space-time resource optimization,” Appl. Opt. 37, 296–307 (1998).
[CrossRef]

Intl. J. Optoelectronics. (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” Intl. J. Optoelectronics. 11, 155–168 (1997).

J. Lightwave Technol. (1)

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks.” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

Optical Engineering (2)

S. Patra, J. Ma, V. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,”Optical Engineering, May1994, Vol. 33, No.5, 1561

V. N. Morozov, L. Yung-Cheng, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems packaging,” Optical Engineering 35, 2034–2044 (1996).
[CrossRef]

Pure Appl. Opt. (1)

V. Baukens, G. Verschaffelt, P. Tuteleers, P. Vynck, H. Ottevaere, M. Kufner, S. Kufner, I. Veretennicoff, R. Bockstaele, A. Van Hove, B. Dhoedt, R. Baets, H. Thienpont, “Performances of Optical Multi-Chip-Module Interconnects: Comparing Guided-Wave and Free-Space Pathways,” Pure Appl. Opt. 1, 255–261 (1999).
[CrossRef]

Other (16)

W. L. Hendrick, “Design, fabrication, and packaging of free space optical interconnects,” Ph.D. dissertation, (University of California, San Diego, Calif., 2000)

W. L. Hendrick, N. S. F. Ozkan, P. J. Marchand, S. C. Esener, “A Monte Carlo simulation for tolerancing microbeam free-space optical interconnects,” in Optics in Computing, of 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 133–135.

A. Krishnamoorthy, D. A. B. Miller, “Scaling opto-electronic-VLSI circuits into 21st century: a technology roadmap,” IEEE JST in Quant. El.2, 55–76 (1996).
[CrossRef]

B. R. Frieden, Probability, Statistical Optics, and Data Testing, 3rd ed., (Springer, New York, 2001).
[CrossRef]

Ron C. Mittelhammer, Mathematical Statistics for Economics and Business (Springer, New York, 1996).
[CrossRef]

J. Neter, M. H. Kutner, C. J. Nachtsheim, W. Wasserman, Applied Linear Statistical Models (Mc Graw-Hill, New York, 1996).

R. L. Mason, R. F. Gunst, J. L. Hess, Statistical Design and Analysis of Experiments (John Wiley and Sons, New York, 1989).

L. L. Lapin, Quantitative Methods for Business Decisions (Harcourt Brace Jovanovich, Inc., San Diego, Calif., 1981).

G. E. P. Box, W. G. Hunter, J. S. Hunter, Statistics for Experimenters (John Wiley and Sons, New York, 1978).

R. H. Myers, Response Surface Methodology (Allyn and Bacon, Inc., Boston, 1971).

W. Mendenhall, Introduction to Linear Models and the Design and Analysis of Experiments (Wadsworth Publishing Co., Belmont, Calif., 1968).

N. R. Draper, H. Smith, Applied Regression Analysis (John Wiley and Sons, Inc.New York, 1966).

D. R. Cox, Planning of Experiments (John Wiley and Sons, New York, 1966).

O. L. Davies, ed., The Design and Analysis of Industrial Experiments (Hafner Publishing Co., New York, 1963).

M. Sasieni, A. Yaspan, L. Freidmen, Operations Research: Methods and Problems (John Wiley and Sons, Inc., New York, 1959).

W. G. Cochran, G. M. Cox, Experimental Designs (John Wiley and Sons, New York, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Microbeam interconnection.

Fig. 2
Fig. 2

Comparison of predicted versus observed response for S 7, where other variables are, at typical values.

Fig. 3
Fig. 3

Response versus S 7 and S 8, where the other variables are at typical levels.

Fig. 4
Fig. 4

Response versus S 3 and S 7, where the other variables are at typical levels.

Tables (5)

Tables Icon

Table 1 Tolerance Parameters

Tables Icon

Table 2 Detection Efficiency Results from Monte Carlo Simulation

Tables Icon

Table 3 Probability of Obtaining at Least 80% Detection Efficiency at Some Selected Pointsa

Tables Icon

Table 4 Ranking of the variablesa

Tables Icon

Table 5 Tolerance Trade-offs

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P.E. =14erf 2ωδx+D2-erf 2ωδx-D2×erf 2ωδy+D2-erf 2ωδy-D2,
P.E. = 1 - e-D22ω2.
Ŷ=1.3156-0.12675S3-0.00323S3S5+0.008694S3S8-0.1623S4+0.006213S4+0.006216S4S8+3.1964×10-4S6S10-0.00224S6S7-0.01158S72-0.04095S8,
PESS=i=120Yci-Y¯c2,
LFSS=RSS-PESS,
=0.33246-0.0004948474,
=0.331965153.
Fcalculated=0.331965153/5270.0004948474/19=24.18.
Yˆ=1.1718-0.0319S3+0.0149S3S4-0.2647S4+0.0013S43+0.0148S4S5-0.0073S4S6+0.0045S4S7+0.0021S4S8+0.0146S42-0.0431S5+0.0323S6+0.0629S7+0.0056S73-0.0622S72-0.0032S8-8.3504×10-5S8S9-2.1919×10-4S82-3.9842×10-5S22S3-7.6901×10-5S32S11-6.7219×10-6S32S12+9.8218×10-4S32S4+3.0432×10-4S32S5-0.002S32S6-0.0022S42S3-0.0016S42S5-6.6442×10-4S42S7-3.2558×10-4S42S8-2.783×10-4S52S7+4.3449×10-4S72S3+0.0023S72S4+5.669×10-4S72S5+1.2017×10-5S82S3+3.1216×10-5S282S4+8.0961×10-6S82S5+8.3458×10-6S82S7.

Metrics