Abstract

We propose a method to implement a speckle-reduced coherent three-dimensional (3D) display system by a combination of integral imaging and photorefractive volume holographic storage. The 3D real object is imaged through the microlens array and stored in the photorefractive crystal. During the reconstruction process a phase conjugate reading beam is used to minimize aberration, and a rotating diffuser located on the imaging plane of the lens array is employed to reduce the speckle noise. The speckle-reduced 3D image with a wide viewing angle can be reconstructed by use of the proposed system. Experimental results are presented and optical parameters of the proposed system are discussed in detail.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okoshi, Three-Dimensional Imaging Techniques, (Academic Press, New York, 1971)
  2. B. Javidi, E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610–612 (2000).
    [CrossRef]
  3. N. Davis, M. McCormick, L. Yang, “3D imaging systems: a new development,” Appl. Opt. 27, 4520–4528 (1988).
    [CrossRef]
  4. S.-H. Shin, B. Javidi, “Three-dimensional object recognition by use of a photorefractive volume holographic processor,” Opt. Lett. 26, 1161–1163 (2001).
    [CrossRef]
  5. B. P. Ketchel, G. L. Wood, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
    [CrossRef]
  6. H. Arimoto, B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001).
    [CrossRef]
  7. E. Tajahuerce, B. Javidi, “Three-dimensional image security,” in Three-Dimensional Video and Display: Devices and Systems, B. Javidi, F. Okano, eds., Proc. SPIECR76, 337–350 (2001).
  8. H. J. Caulfield, ed., Handbook of Optical Holography (Academic, New York, 1979).
  9. J. P. Huignard, J. P. Herriau, L. Pichon, A. Marrakchi, “Speckle-free imaging in four-wave mixing experiments with Bi12SiO20 crystals,” Opt. Lett. 5, 436–437 (1980).
    [CrossRef] [PubMed]
  10. F. Wyrowski, O. Bryngdahl, “Speckle-free reconstruction in digital holography,” J. Opt. Soc. Am. A 5, 1171–1174 (1989).
    [CrossRef]
  11. G. Lippmann, “La photographie integrale,” Comptes Rendus 146, 446–451, Academie des Sciences(1908).
  12. H. Hoshino, F. Okano, H. Isono, I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
    [CrossRef]
  13. J. Arai, F. Okano, H. Hoshino, I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998).
    [CrossRef]
  14. H. Higuchi, J. Hamasaki, “Real-time transmission of 3-D images formed by parallax panoramagrams,” Appl. Opt. 17, 3895–3902 (1978).
    [CrossRef] [PubMed]
  15. F. Okano, H. Hoshino, J. Arai, I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
    [CrossRef] [PubMed]
  16. D. Psaltis, F. Mok, “Holographic Memories,” Sci. Am. 273, 70–76 (1995).
    [CrossRef]
  17. A. D. McAulay, Optical Computer Architectures, (Wiley, New York, 1991)
  18. E. G. Paek, Optical Pattern Recognition with Microlasers, National Institute of Standards and Technology Internal Report 6017, Gaithersburg, Md.1998).
  19. C. Warde, C. M. Schiller, J. Bounds, T. N. Horsky, G. A. Melnik, R. J. Dillon, “Charge-transfer-plate spatial light modulators,” Appl. Opt. 31, 3971–3977 (1992).
    [CrossRef] [PubMed]
  20. T. Okoshi, “Optimum design and depth resolution of lens-sheet and projection-type three-dimensional displays,” Appl. Opt. 10, 2284–2291 (1971).
    [CrossRef] [PubMed]
  21. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

2001 (2)

2000 (1)

1998 (2)

1997 (2)

F. Okano, H. Hoshino, J. Arai, I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
[CrossRef] [PubMed]

B. P. Ketchel, G. L. Wood, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[CrossRef]

1995 (1)

D. Psaltis, F. Mok, “Holographic Memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

1992 (1)

1989 (1)

F. Wyrowski, O. Bryngdahl, “Speckle-free reconstruction in digital holography,” J. Opt. Soc. Am. A 5, 1171–1174 (1989).
[CrossRef]

1988 (1)

1980 (1)

1978 (1)

1971 (1)

1908 (1)

G. Lippmann, “La photographie integrale,” Comptes Rendus 146, 446–451, Academie des Sciences(1908).

Arai, J.

Arimoto, H.

Bounds, J.

Bryngdahl, O.

F. Wyrowski, O. Bryngdahl, “Speckle-free reconstruction in digital holography,” J. Opt. Soc. Am. A 5, 1171–1174 (1989).
[CrossRef]

Davis, N.

Dillon, R. J.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Hamasaki, J.

Herriau, J. P.

Higuchi, H.

Horsky, T. N.

Hoshino, H.

Huignard, J. P.

Isono, H.

Javidi, B.

Ketchel, B. P.

B. P. Ketchel, G. L. Wood, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[CrossRef]

Lippmann, G.

G. Lippmann, “La photographie integrale,” Comptes Rendus 146, 446–451, Academie des Sciences(1908).

Marrakchi, A.

McAulay, A. D.

A. D. McAulay, Optical Computer Architectures, (Wiley, New York, 1991)

McCormick, M.

Melnik, G. A.

Mok, F.

D. Psaltis, F. Mok, “Holographic Memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

Okano, F.

Okoshi, T.

Paek, E. G.

E. G. Paek, Optical Pattern Recognition with Microlasers, National Institute of Standards and Technology Internal Report 6017, Gaithersburg, Md.1998).

Pichon, L.

Psaltis, D.

D. Psaltis, F. Mok, “Holographic Memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

Schiller, C. M.

Shin, S.-H.

Tajahuerce, E.

B. Javidi, E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610–612 (2000).
[CrossRef]

E. Tajahuerce, B. Javidi, “Three-dimensional image security,” in Three-Dimensional Video and Display: Devices and Systems, B. Javidi, F. Okano, eds., Proc. SPIECR76, 337–350 (2001).

Warde, C.

Wood, G. L.

B. P. Ketchel, G. L. Wood, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[CrossRef]

Wyrowski, F.

F. Wyrowski, O. Bryngdahl, “Speckle-free reconstruction in digital holography,” J. Opt. Soc. Am. A 5, 1171–1174 (1989).
[CrossRef]

Yang, L.

Yuyama, I.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

B. P. Ketchel, G. L. Wood, “Three-dimensional image reconstruction using strontium barium niobate,” Appl. Phys. Lett. 71, 7–9 (1997).
[CrossRef]

Comptes Rendus (1)

G. Lippmann, “La photographie integrale,” Comptes Rendus 146, 446–451, Academie des Sciences(1908).

J. Opt. Soc. Am. A (2)

H. Hoshino, F. Okano, H. Isono, I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
[CrossRef]

F. Wyrowski, O. Bryngdahl, “Speckle-free reconstruction in digital holography,” J. Opt. Soc. Am. A 5, 1171–1174 (1989).
[CrossRef]

Opt. Lett. (4)

Sci. Am. (1)

D. Psaltis, F. Mok, “Holographic Memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

Other (6)

A. D. McAulay, Optical Computer Architectures, (Wiley, New York, 1991)

E. G. Paek, Optical Pattern Recognition with Microlasers, National Institute of Standards and Technology Internal Report 6017, Gaithersburg, Md.1998).

T. Okoshi, Three-Dimensional Imaging Techniques, (Academic Press, New York, 1971)

E. Tajahuerce, B. Javidi, “Three-dimensional image security,” in Three-Dimensional Video and Display: Devices and Systems, B. Javidi, F. Okano, eds., Proc. SPIECR76, 337–350 (2001).

H. J. Caulfield, ed., Handbook of Optical Holography (Academic, New York, 1979).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Various sensor pickup methods, (a) film pickup, (b) direct pickup, (c) photorefractive pickup: MLA is a microlens array.

Fig. 2
Fig. 2

Schematics of the photorefractive pickup integral imaging system.

Fig. 3
Fig. 3

Two reconstruction methods, (a) reconstruction with photographic film or spatial light modulator, (b) reconstruction with phase conjugate wave: MLA is a microlens array, SLM is a spatial light modulator.

Fig. 4
Fig. 4

Schematic diagram of 3D-image formation.

Fig. 5
Fig. 5

Overall resolution of the integral imaging system obtained from Eq. (8) with (a) LCD. (b) photorefractive crystal. The resolution due to the viewing spatial frequency of a 2D elemental image is illustrated by dashed and dotted curve. The resolution due to the Nyquist frequency is illustrated by a solid curve. The cutoff spatial frequency caused by diffraction is shown by dotted curve. The overall resolution is illustrated by the thick solid curve. The parameters for the resolution calculation are as follows: L = 2 m, P e = W l = 1.01 mm, α i = 50 mm-1 (LCD), α i = 1000 mm-1 (photorefractive crystal).

Fig. 6
Fig. 6

Experimental setup for the speckle-reduced 3D-display system. (a) Recording. (b) Reconstruction. M is a mirror, P is a polarizer, HWP is a half-wave plate, PBS is a polarizing beam splitter, MLA is a microlens array, RD is a rotating diffuser.

Fig. 7
Fig. 7

Reconstructed images by use of a phase-conjugate reading beam (a) without a rotating diffuser. (b) with a rotating diffuser.

Fig. 8
Fig. 8

Speckle-noise reduced images reconstructed at two different perspective angles.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

WSfcZMC WL
WL=WMN,
ZF=fFZMC.
WLfF=WSZCWSfc.
βele=αizi|L-zi|.
βnyq= L2Pe,
βdif= wlλzi|L-zi|,
βmax=minβele, βnyq, βdif.
θ=2 arctanPe2g.

Metrics