Abstract

The variation in transmittance produced when a photopolymer is irradiated with a pulsed laser is analyzed and experimental results obtained when diffraction gratings are stored using pulsed exposure are presented. In either case, the influence of the energy of the irradiation pulse, the number of pulses, and the pulse repetition rate were studied. The photopolymer used was an acrylamide/polyvinyl alcohol dry film with a yellow eosin-thiethanol-amine mixture as a photoinitiator system. The recording of the gratings was performed by use of a holographic copying process. The samples were exposed and holograms recorded with a collimated beam from a frequency-doubled Nd:YAG (532 nm) Q-switched laser. Our initial results show that it is possible to obtain diffraction gratings with a diffraction efficiency of 60% and a refractive index modulation up to 2.8 × 10-3. The energetic sensitivities achieved are close to those obtained with the same material and continuous irradiation without a preprocessing of the gratings.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Burland, “Applications of Holography in the Investigation of Photochemical Reactions,” Acc. Chem. Res. 16, 218–224 (1983).
    [CrossRef]
  2. J. Pinsl, M. Gehrtz, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
    [CrossRef]
  3. C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a Tool for Mechanistic and Kinetic Studies of Photopolymerization Reactions: A Theorical and Experimental Approach,” Macromolecules 22, 791–799 (1989).
    [CrossRef]
  4. S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, “Holography as a technique for the study of photopolymerization kinetics in dry polymeric films with a nonlinear response,” Appl. Opt. 38, 955–962 (1999).
    [CrossRef]
  5. G. Li, L. Liu, B. Liu, Z. Xu, “High-efficiency volume hologram recording with a pulsed signal beam,” Opt. Lett. 23, 1307–1309 (1998).
    [CrossRef]
  6. K. T. Weitzel, U. P. Wild, V. N. Mikhailov, V. N. Krylov, “Hologram recording in Dupont photopolymer films by use of pulse exposure,” Opt. Lett. 22, 1899–1901 (1997).
    [CrossRef]
  7. A. V. Aristov, “Pulsed recording of holograms by stepwise quantum excitation of media based on organic dyes,” J. Opt. Technol. 66, 383–386 (1999).
    [CrossRef]
  8. D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
    [CrossRef]
  9. O. F. Olaj, I. Bitai, F. Hinkemann, “The laser-flash-initiated polymerization as a tool of evaluating (individual) kinetic constants of free-radical polymerization, 2. The direct determination of the rate constant of chain propagation,” Makromol. Chem. 188, 1689–1702 (1987).
    [CrossRef]
  10. M. D. Zammit, T. P. Davis, G. D. Willet, “Visible light pulsed-laser polymerization at 532 nm employing a julolidine dye photosensitizer initiation system,” Macromolecules 30, 5655–5659 (1997).
    [CrossRef]
  11. C. Decker, K. Moussa, “Kinetic investigations of photopolymerizations induced by laser beams,” Makromol. Chem. 191, 963–979 (1990).
    [CrossRef]
  12. F. W. Deeg, J. Pinsl, C. Bräuchle, “New Gratings Experiments in the Study of Irreversible Photochemical Reactions,” IEEE J. Quantum Electron. QE-22, 1473–1481 (1986).
  13. C. Garcia, A. Costela, A. Fimia, I. García-Moreno, I. Pascual, R. Sastre, “Recording of diffraction gratings in polyvinyl alcohol/acrylamide photopolymers by pulsed laser irradiation,” in Practical Holography XV and Holographic Materials VII, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE4296, 274–281 (2001).
    [CrossRef]
  14. C. García, I. Pascual, A. Costela, I. García-Moreno, A. Fimia, R. Sastre, “Experimental study of the acrylamide photopolymer with a pulsed laser,” Opt. Commun. 188, 163–166 (2001).
    [CrossRef]
  15. I. Pascual, A. Beléndez, A. Fimia, “A two-step method for recording holographic optical elements with partially coherent light,” J. Opt. 22, 135–140 (1991).
    [CrossRef]
  16. I. Pascual, A. Beléndez, A. Fimia, “Holographic system for copying holograms by using partially coherent light,” Appl. Opt. 31, 3312–3318 (1992).
    [CrossRef] [PubMed]
  17. C. García, A. Fimia, I. Pascual, “Holographic Behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Physics B 72, 311–316 (2001).
    [CrossRef]
  18. H. Kasprzak, N. Sultanova, H. Podbielska, “Nonlinear effects of the recording material on the image quality of a Fourier hologram,” J. Opt. Soc. Am. A 4, 843–846 (1987).
    [CrossRef] [PubMed]
  19. C. Decker, “Laser curing, imaging, and polymerization kinetics” in Chemistry Technology of UV and EB Formulations (Wiley-Site Series, London, 1996) Vol. V, Chap. 4.
  20. M. L. Coote, M. D. Zammit, T. P. Davis, “Determination of free-radical rate coefficients using pulsed-laser polymerization,” Trends Polym. Sci. 4, 189–196 (1996).
  21. A. Costela, I. Garcia-Moreno, J. Dabrio, R. Sastre, “Photochemistry and photopolymerization activity of p-nitroaniline in the presence of n,n-dimethylaniline as a bimolecular photoinitiator system,” J. Polym. Sci. Part A Polym. Chem. 35, 3801–3812 (1997).
    [CrossRef]

2001 (2)

C. García, I. Pascual, A. Costela, I. García-Moreno, A. Fimia, R. Sastre, “Experimental study of the acrylamide photopolymer with a pulsed laser,” Opt. Commun. 188, 163–166 (2001).
[CrossRef]

C. García, A. Fimia, I. Pascual, “Holographic Behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Physics B 72, 311–316 (2001).
[CrossRef]

1999 (2)

1998 (1)

1997 (3)

K. T. Weitzel, U. P. Wild, V. N. Mikhailov, V. N. Krylov, “Hologram recording in Dupont photopolymer films by use of pulse exposure,” Opt. Lett. 22, 1899–1901 (1997).
[CrossRef]

M. D. Zammit, T. P. Davis, G. D. Willet, “Visible light pulsed-laser polymerization at 532 nm employing a julolidine dye photosensitizer initiation system,” Macromolecules 30, 5655–5659 (1997).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. Dabrio, R. Sastre, “Photochemistry and photopolymerization activity of p-nitroaniline in the presence of n,n-dimethylaniline as a bimolecular photoinitiator system,” J. Polym. Sci. Part A Polym. Chem. 35, 3801–3812 (1997).
[CrossRef]

1996 (1)

M. L. Coote, M. D. Zammit, T. P. Davis, “Determination of free-radical rate coefficients using pulsed-laser polymerization,” Trends Polym. Sci. 4, 189–196 (1996).

1992 (2)

I. Pascual, A. Beléndez, A. Fimia, “Holographic system for copying holograms by using partially coherent light,” Appl. Opt. 31, 3312–3318 (1992).
[CrossRef] [PubMed]

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

1991 (1)

I. Pascual, A. Beléndez, A. Fimia, “A two-step method for recording holographic optical elements with partially coherent light,” J. Opt. 22, 135–140 (1991).
[CrossRef]

1990 (1)

C. Decker, K. Moussa, “Kinetic investigations of photopolymerizations induced by laser beams,” Makromol. Chem. 191, 963–979 (1990).
[CrossRef]

1989 (1)

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a Tool for Mechanistic and Kinetic Studies of Photopolymerization Reactions: A Theorical and Experimental Approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

1987 (2)

H. Kasprzak, N. Sultanova, H. Podbielska, “Nonlinear effects of the recording material on the image quality of a Fourier hologram,” J. Opt. Soc. Am. A 4, 843–846 (1987).
[CrossRef] [PubMed]

O. F. Olaj, I. Bitai, F. Hinkemann, “The laser-flash-initiated polymerization as a tool of evaluating (individual) kinetic constants of free-radical polymerization, 2. The direct determination of the rate constant of chain propagation,” Makromol. Chem. 188, 1689–1702 (1987).
[CrossRef]

1986 (2)

F. W. Deeg, J. Pinsl, C. Bräuchle, “New Gratings Experiments in the Study of Irreversible Photochemical Reactions,” IEEE J. Quantum Electron. QE-22, 1473–1481 (1986).

J. Pinsl, M. Gehrtz, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
[CrossRef]

1983 (1)

D. M. Burland, “Applications of Holography in the Investigation of Photochemical Reactions,” Acc. Chem. Res. 16, 218–224 (1983).
[CrossRef]

Aristov, A. V.

Beléndez, A.

I. Pascual, A. Beléndez, A. Fimia, “Holographic system for copying holograms by using partially coherent light,” Appl. Opt. 31, 3312–3318 (1992).
[CrossRef] [PubMed]

I. Pascual, A. Beléndez, A. Fimia, “A two-step method for recording holographic optical elements with partially coherent light,” J. Opt. 22, 135–140 (1991).
[CrossRef]

Bitai, I.

O. F. Olaj, I. Bitai, F. Hinkemann, “The laser-flash-initiated polymerization as a tool of evaluating (individual) kinetic constants of free-radical polymerization, 2. The direct determination of the rate constant of chain propagation,” Makromol. Chem. 188, 1689–1702 (1987).
[CrossRef]

Blaya, S.

Bräuchle, C.

F. W. Deeg, J. Pinsl, C. Bräuchle, “New Gratings Experiments in the Study of Irreversible Photochemical Reactions,” IEEE J. Quantum Electron. QE-22, 1473–1481 (1986).

Burland, D. M.

D. M. Burland, “Applications of Holography in the Investigation of Photochemical Reactions,” Acc. Chem. Res. 16, 218–224 (1983).
[CrossRef]

Carre, C.

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a Tool for Mechanistic and Kinetic Studies of Photopolymerization Reactions: A Theorical and Experimental Approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

Carretero, L.

Coote, M. L.

M. L. Coote, M. D. Zammit, T. P. Davis, “Determination of free-radical rate coefficients using pulsed-laser polymerization,” Trends Polym. Sci. 4, 189–196 (1996).

Costela, A.

C. García, I. Pascual, A. Costela, I. García-Moreno, A. Fimia, R. Sastre, “Experimental study of the acrylamide photopolymer with a pulsed laser,” Opt. Commun. 188, 163–166 (2001).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. Dabrio, R. Sastre, “Photochemistry and photopolymerization activity of p-nitroaniline in the presence of n,n-dimethylaniline as a bimolecular photoinitiator system,” J. Polym. Sci. Part A Polym. Chem. 35, 3801–3812 (1997).
[CrossRef]

C. Garcia, A. Costela, A. Fimia, I. García-Moreno, I. Pascual, R. Sastre, “Recording of diffraction gratings in polyvinyl alcohol/acrylamide photopolymers by pulsed laser irradiation,” in Practical Holography XV and Holographic Materials VII, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE4296, 274–281 (2001).
[CrossRef]

Dabrio, J.

A. Costela, I. Garcia-Moreno, J. Dabrio, R. Sastre, “Photochemistry and photopolymerization activity of p-nitroaniline in the presence of n,n-dimethylaniline as a bimolecular photoinitiator system,” J. Polym. Sci. Part A Polym. Chem. 35, 3801–3812 (1997).
[CrossRef]

Davis, T. P.

M. D. Zammit, T. P. Davis, G. D. Willet, “Visible light pulsed-laser polymerization at 532 nm employing a julolidine dye photosensitizer initiation system,” Macromolecules 30, 5655–5659 (1997).
[CrossRef]

M. L. Coote, M. D. Zammit, T. P. Davis, “Determination of free-radical rate coefficients using pulsed-laser polymerization,” Trends Polym. Sci. 4, 189–196 (1996).

Decker, C.

C. Decker, K. Moussa, “Kinetic investigations of photopolymerizations induced by laser beams,” Makromol. Chem. 191, 963–979 (1990).
[CrossRef]

C. Decker, “Laser curing, imaging, and polymerization kinetics” in Chemistry Technology of UV and EB Formulations (Wiley-Site Series, London, 1996) Vol. V, Chap. 4.

Deeg, F. W.

F. W. Deeg, J. Pinsl, C. Bräuchle, “New Gratings Experiments in the Study of Irreversible Photochemical Reactions,” IEEE J. Quantum Electron. QE-22, 1473–1481 (1986).

Fimia, A.

C. García, I. Pascual, A. Costela, I. García-Moreno, A. Fimia, R. Sastre, “Experimental study of the acrylamide photopolymer with a pulsed laser,” Opt. Commun. 188, 163–166 (2001).
[CrossRef]

C. García, A. Fimia, I. Pascual, “Holographic Behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Physics B 72, 311–316 (2001).
[CrossRef]

S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, “Holography as a technique for the study of photopolymerization kinetics in dry polymeric films with a nonlinear response,” Appl. Opt. 38, 955–962 (1999).
[CrossRef]

I. Pascual, A. Beléndez, A. Fimia, “Holographic system for copying holograms by using partially coherent light,” Appl. Opt. 31, 3312–3318 (1992).
[CrossRef] [PubMed]

I. Pascual, A. Beléndez, A. Fimia, “A two-step method for recording holographic optical elements with partially coherent light,” J. Opt. 22, 135–140 (1991).
[CrossRef]

C. Garcia, A. Costela, A. Fimia, I. García-Moreno, I. Pascual, R. Sastre, “Recording of diffraction gratings in polyvinyl alcohol/acrylamide photopolymers by pulsed laser irradiation,” in Practical Holography XV and Holographic Materials VII, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE4296, 274–281 (2001).
[CrossRef]

Fouassier, J. P.

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a Tool for Mechanistic and Kinetic Studies of Photopolymerization Reactions: A Theorical and Experimental Approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

Garcia, C.

C. Garcia, A. Costela, A. Fimia, I. García-Moreno, I. Pascual, R. Sastre, “Recording of diffraction gratings in polyvinyl alcohol/acrylamide photopolymers by pulsed laser irradiation,” in Practical Holography XV and Holographic Materials VII, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE4296, 274–281 (2001).
[CrossRef]

García, C.

C. García, I. Pascual, A. Costela, I. García-Moreno, A. Fimia, R. Sastre, “Experimental study of the acrylamide photopolymer with a pulsed laser,” Opt. Commun. 188, 163–166 (2001).
[CrossRef]

C. García, A. Fimia, I. Pascual, “Holographic Behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Physics B 72, 311–316 (2001).
[CrossRef]

Garcia-Moreno, I.

A. Costela, I. Garcia-Moreno, J. Dabrio, R. Sastre, “Photochemistry and photopolymerization activity of p-nitroaniline in the presence of n,n-dimethylaniline as a bimolecular photoinitiator system,” J. Polym. Sci. Part A Polym. Chem. 35, 3801–3812 (1997).
[CrossRef]

García-Moreno, I.

C. García, I. Pascual, A. Costela, I. García-Moreno, A. Fimia, R. Sastre, “Experimental study of the acrylamide photopolymer with a pulsed laser,” Opt. Commun. 188, 163–166 (2001).
[CrossRef]

C. Garcia, A. Costela, A. Fimia, I. García-Moreno, I. Pascual, R. Sastre, “Recording of diffraction gratings in polyvinyl alcohol/acrylamide photopolymers by pulsed laser irradiation,” in Practical Holography XV and Holographic Materials VII, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE4296, 274–281 (2001).
[CrossRef]

Gehrtz, M.

J. Pinsl, M. Gehrtz, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
[CrossRef]

Hinkemann, F.

O. F. Olaj, I. Bitai, F. Hinkemann, “The laser-flash-initiated polymerization as a tool of evaluating (individual) kinetic constants of free-radical polymerization, 2. The direct determination of the rate constant of chain propagation,” Makromol. Chem. 188, 1689–1702 (1987).
[CrossRef]

Kasprzak, H.

Krylov, V. N.

Li, G.

Liu, B.

Liu, L.

Lougnot, D. J.

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a Tool for Mechanistic and Kinetic Studies of Photopolymerization Reactions: A Theorical and Experimental Approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

Madrigal, R. F.

Mallavia, R.

Mikhailov, V. N.

Moussa, K.

C. Decker, K. Moussa, “Kinetic investigations of photopolymerizations induced by laser beams,” Makromol. Chem. 191, 963–979 (1990).
[CrossRef]

Olaj, O. F.

O. F. Olaj, I. Bitai, F. Hinkemann, “The laser-flash-initiated polymerization as a tool of evaluating (individual) kinetic constants of free-radical polymerization, 2. The direct determination of the rate constant of chain propagation,” Makromol. Chem. 188, 1689–1702 (1987).
[CrossRef]

Pascual, I.

C. García, A. Fimia, I. Pascual, “Holographic Behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Physics B 72, 311–316 (2001).
[CrossRef]

C. García, I. Pascual, A. Costela, I. García-Moreno, A. Fimia, R. Sastre, “Experimental study of the acrylamide photopolymer with a pulsed laser,” Opt. Commun. 188, 163–166 (2001).
[CrossRef]

I. Pascual, A. Beléndez, A. Fimia, “Holographic system for copying holograms by using partially coherent light,” Appl. Opt. 31, 3312–3318 (1992).
[CrossRef] [PubMed]

I. Pascual, A. Beléndez, A. Fimia, “A two-step method for recording holographic optical elements with partially coherent light,” J. Opt. 22, 135–140 (1991).
[CrossRef]

C. Garcia, A. Costela, A. Fimia, I. García-Moreno, I. Pascual, R. Sastre, “Recording of diffraction gratings in polyvinyl alcohol/acrylamide photopolymers by pulsed laser irradiation,” in Practical Holography XV and Holographic Materials VII, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE4296, 274–281 (2001).
[CrossRef]

Pinsl, J.

F. W. Deeg, J. Pinsl, C. Bräuchle, “New Gratings Experiments in the Study of Irreversible Photochemical Reactions,” IEEE J. Quantum Electron. QE-22, 1473–1481 (1986).

J. Pinsl, M. Gehrtz, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
[CrossRef]

Podbielska, H.

Sastre, R.

C. García, I. Pascual, A. Costela, I. García-Moreno, A. Fimia, R. Sastre, “Experimental study of the acrylamide photopolymer with a pulsed laser,” Opt. Commun. 188, 163–166 (2001).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. Dabrio, R. Sastre, “Photochemistry and photopolymerization activity of p-nitroaniline in the presence of n,n-dimethylaniline as a bimolecular photoinitiator system,” J. Polym. Sci. Part A Polym. Chem. 35, 3801–3812 (1997).
[CrossRef]

C. Garcia, A. Costela, A. Fimia, I. García-Moreno, I. Pascual, R. Sastre, “Recording of diffraction gratings in polyvinyl alcohol/acrylamide photopolymers by pulsed laser irradiation,” in Practical Holography XV and Holographic Materials VII, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE4296, 274–281 (2001).
[CrossRef]

Sultanova, N.

Turck, C.

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

Weitzel, K. T.

Wild, U. P.

Willet, G. D.

M. D. Zammit, T. P. Davis, G. D. Willet, “Visible light pulsed-laser polymerization at 532 nm employing a julolidine dye photosensitizer initiation system,” Macromolecules 30, 5655–5659 (1997).
[CrossRef]

Xu, Z.

Zammit, M. D.

M. D. Zammit, T. P. Davis, G. D. Willet, “Visible light pulsed-laser polymerization at 532 nm employing a julolidine dye photosensitizer initiation system,” Macromolecules 30, 5655–5659 (1997).
[CrossRef]

M. L. Coote, M. D. Zammit, T. P. Davis, “Determination of free-radical rate coefficients using pulsed-laser polymerization,” Trends Polym. Sci. 4, 189–196 (1996).

Acc. Chem. Res. (1)

D. M. Burland, “Applications of Holography in the Investigation of Photochemical Reactions,” Acc. Chem. Res. 16, 218–224 (1983).
[CrossRef]

Appl. Opt. (2)

Appl. Physics B (1)

C. García, A. Fimia, I. Pascual, “Holographic Behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Physics B 72, 311–316 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

F. W. Deeg, J. Pinsl, C. Bräuchle, “New Gratings Experiments in the Study of Irreversible Photochemical Reactions,” IEEE J. Quantum Electron. QE-22, 1473–1481 (1986).

J. Opt. (1)

I. Pascual, A. Beléndez, A. Fimia, “A two-step method for recording holographic optical elements with partially coherent light,” J. Opt. 22, 135–140 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Technol. (1)

J. Phys. Chem. (1)

J. Pinsl, M. Gehrtz, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
[CrossRef]

J. Polym. Sci. Part A Polym. Chem. (1)

A. Costela, I. Garcia-Moreno, J. Dabrio, R. Sastre, “Photochemistry and photopolymerization activity of p-nitroaniline in the presence of n,n-dimethylaniline as a bimolecular photoinitiator system,” J. Polym. Sci. Part A Polym. Chem. 35, 3801–3812 (1997).
[CrossRef]

Macromolecules (2)

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a Tool for Mechanistic and Kinetic Studies of Photopolymerization Reactions: A Theorical and Experimental Approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

M. D. Zammit, T. P. Davis, G. D. Willet, “Visible light pulsed-laser polymerization at 532 nm employing a julolidine dye photosensitizer initiation system,” Macromolecules 30, 5655–5659 (1997).
[CrossRef]

Makromol. Chem. (2)

C. Decker, K. Moussa, “Kinetic investigations of photopolymerizations induced by laser beams,” Makromol. Chem. 191, 963–979 (1990).
[CrossRef]

O. F. Olaj, I. Bitai, F. Hinkemann, “The laser-flash-initiated polymerization as a tool of evaluating (individual) kinetic constants of free-radical polymerization, 2. The direct determination of the rate constant of chain propagation,” Makromol. Chem. 188, 1689–1702 (1987).
[CrossRef]

Opt. Commun. (1)

C. García, I. Pascual, A. Costela, I. García-Moreno, A. Fimia, R. Sastre, “Experimental study of the acrylamide photopolymer with a pulsed laser,” Opt. Commun. 188, 163–166 (2001).
[CrossRef]

Opt. Lett. (2)

Pure Appl. Opt. (1)

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

Trends Polym. Sci. (1)

M. L. Coote, M. D. Zammit, T. P. Davis, “Determination of free-radical rate coefficients using pulsed-laser polymerization,” Trends Polym. Sci. 4, 189–196 (1996).

Other (2)

C. Garcia, A. Costela, A. Fimia, I. García-Moreno, I. Pascual, R. Sastre, “Recording of diffraction gratings in polyvinyl alcohol/acrylamide photopolymers by pulsed laser irradiation,” in Practical Holography XV and Holographic Materials VII, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE4296, 274–281 (2001).
[CrossRef]

C. Decker, “Laser curing, imaging, and polymerization kinetics” in Chemistry Technology of UV and EB Formulations (Wiley-Site Series, London, 1996) Vol. V, Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Transmittance spectra for different number of pulses at a pulse fluence of 1.74 mJ/cm2 and a pulse repetition rate of 3 Hz.

Fig. 3
Fig. 3

Variation in transmittance as a function of the number of pump pulses for different laser fluences.

Fig. 4
Fig. 4

Experimental and theoretical transmittance curves as a function of log of exposure for two pulse fluences: a) 0.67 mJ/cm2 and b) 1.74 mJ/cm2.

Fig. 5
Fig. 5

Slope of linear region (filled circles) and the activation energy (open circles) as a function of the laser pulse fluence for a repetition rate of 3 Hz. Solid curves are just to help the eyes.

Fig. 6
Fig. 6

Variation in transmittance as a function of the pulse repetition rate for a pulse fluence of 2.2 mJ/cm2 and 1000 pulses. Solid curve is just to help the eyes.

Fig. 7
Fig. 7

Diffraction efficiency as a function of exposure for different pulse fluences and a repetition rate of 10 Hz. The points correspond to an increased number of irradiation pulses.

Fig. 8
Fig. 8

Transmittance (open circles) and diffraction efficiency (filled circles) versus the exposure for a pulse fluence of: a) 0.2 mJ/cm2, b) 0.67 mJ/cm2, and c) 1.7 mJ/cm2 and a repetition rate of 10 Hz. Solid curves are just to help the eyes.

Fig. 9
Fig. 9

a) Maximum diffraction efficiency and b) sensitivity as a function of pulse fluence for three different dye concentrations: 1.2 × 10-4 M (filled circles), 2.5 × 10-4 M (open circles), and 5 × 10-4 M (filled triangles). Solid curves are just to help the eyes.

Fig. 10
Fig. 10

Diffraction efficiency as a function of exposure for both continuous and pulsed irradiation with a laser fluence of 3.3 mJ/cm2 and a different repetition rate. Solid curves are just to help the eyes.

Tables (1)

Tables Icon

Table 1 Formulation of the Photopolymeric System

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ΔT=T1+expa-b log E+expc-d log E,
a=2 1+2m log EiT,
b=4mT,
c=lnΔTΔT12log Ei-1+exp2+2m log EiΔT2ΔTΔTlog Ei-1+exp 2,
d=c-lnΔTΔTlog Ei-1+exp 2log Ei.
Ri=I01-10-lPIϕ1.
L=API.
LO=kpMtO,

Metrics