Abstract

A convenient technique for polarization-mode dispersion measurements in short lengths of high-birefringence fibers is reported. The technique is based on spectral interferometry with a frequency-doubled Nd:YAG laser, which is frequency shifted and broadened by self-stimulated Raman scattering in an optical fiber. The different Raman Stokes beams permit accurate measurements over a 40-nm wavelength range in the visible spectrum.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Millot, P. T. Dinda, E. Seve, S. Wabnitz, “Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers,” Opt. Fiber Technol. 7, 170–205 (2001).
    [CrossRef]
  2. J. M. Dudley, F. Gutty, S. Pitois, G. Millot, “Complete characterization of THz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
    [CrossRef]
  3. M. Monerie, P. Lamouler, L. Jeunhomme, “Polarisation mode dispersion measurements in long single mode fibres,” Electron. Lett. 16, 907–908 (1980).
    [CrossRef]
  4. K. Mochizuki, Y. Namihira, H. Wakabayashi, “Polarisation mode dispersion measurements in long single mode fibres,” Electron. Lett. 17, 153–154 (1981).
    [CrossRef]
  5. N. Shibata, M. Tateda, S. Seikai, “Polarization mode dispersion measurement in elliptical core single-mode fibers by a spatial technique,” IEEE J. Quantum Electron. 18, 53–58 (1982).
    [CrossRef]
  6. K. Takada, J. Noda, Y. Sasaki, “Simple measurement method for polarisation modal dispersion in polarisation-maintaining fibres,” Electron. Lett. 19, 1015–1017 (1983).
    [CrossRef]
  7. Y. Yamabayashi, M. Saruwatari, “New measurement method for polarisation dispersion in single-mode fibres employing frequency-modulated optical signal,” Electron. Lett. 19, 239–240 (1983).
    [CrossRef]
  8. Y. Painchaud, M. A. Duguay, F. Ouellette, “Interferometric time measurements of intermodal dispersion in optical fibers by using a CCD photodetector array,” Opt. Lett. 17, 1423–1425 (1992).
    [CrossRef] [PubMed]
  9. W. J. Bock, W. Urbanczyk, “Measurement of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing-type interferometry,” Appl. Opt. 32, 5841–5848 (1993).
    [CrossRef] [PubMed]
  10. C. D. Poole, D. L. Favin, “Polarization mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
    [CrossRef]
  11. X. D. Cao, D. D. Meyerhofer, “Frequency-domain interferometer for measurement of the polarization mode dispersion in single-mode optical fibers,” Opt. Lett. 19, 1837–1839 (1994).
    [CrossRef]
  12. J. M. Dudley, S. G. Murdoch, “Intermodal dispersion and polarization mode dispersion measurements in optical fibers using a self-modelocked Ti:sapphire laser,” Opt. Fiber Technol. 2, 80–84 (1996).
    [CrossRef]
  13. N. K. Sinha, “Normalised dispersion of birefringence of quartz and stress optical coefficient of fused silica and plate glass,” Phys. Chem. Glasses. 19, 69–77 (1978).
  14. S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett. 8, 336–338 (1983).
    [CrossRef] [PubMed]

2001 (2)

G. Millot, P. T. Dinda, E. Seve, S. Wabnitz, “Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers,” Opt. Fiber Technol. 7, 170–205 (2001).
[CrossRef]

J. M. Dudley, F. Gutty, S. Pitois, G. Millot, “Complete characterization of THz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

1996 (1)

J. M. Dudley, S. G. Murdoch, “Intermodal dispersion and polarization mode dispersion measurements in optical fibers using a self-modelocked Ti:sapphire laser,” Opt. Fiber Technol. 2, 80–84 (1996).
[CrossRef]

1994 (2)

C. D. Poole, D. L. Favin, “Polarization mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
[CrossRef]

X. D. Cao, D. D. Meyerhofer, “Frequency-domain interferometer for measurement of the polarization mode dispersion in single-mode optical fibers,” Opt. Lett. 19, 1837–1839 (1994).
[CrossRef]

1993 (1)

1992 (1)

1983 (3)

S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett. 8, 336–338 (1983).
[CrossRef] [PubMed]

K. Takada, J. Noda, Y. Sasaki, “Simple measurement method for polarisation modal dispersion in polarisation-maintaining fibres,” Electron. Lett. 19, 1015–1017 (1983).
[CrossRef]

Y. Yamabayashi, M. Saruwatari, “New measurement method for polarisation dispersion in single-mode fibres employing frequency-modulated optical signal,” Electron. Lett. 19, 239–240 (1983).
[CrossRef]

1982 (1)

N. Shibata, M. Tateda, S. Seikai, “Polarization mode dispersion measurement in elliptical core single-mode fibers by a spatial technique,” IEEE J. Quantum Electron. 18, 53–58 (1982).
[CrossRef]

1981 (1)

K. Mochizuki, Y. Namihira, H. Wakabayashi, “Polarisation mode dispersion measurements in long single mode fibres,” Electron. Lett. 17, 153–154 (1981).
[CrossRef]

1980 (1)

M. Monerie, P. Lamouler, L. Jeunhomme, “Polarisation mode dispersion measurements in long single mode fibres,” Electron. Lett. 16, 907–908 (1980).
[CrossRef]

1978 (1)

N. K. Sinha, “Normalised dispersion of birefringence of quartz and stress optical coefficient of fused silica and plate glass,” Phys. Chem. Glasses. 19, 69–77 (1978).

Bock, W. J.

Cao, X. D.

Dinda, P. T.

G. Millot, P. T. Dinda, E. Seve, S. Wabnitz, “Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers,” Opt. Fiber Technol. 7, 170–205 (2001).
[CrossRef]

Dudley, J. M.

J. M. Dudley, F. Gutty, S. Pitois, G. Millot, “Complete characterization of THz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

J. M. Dudley, S. G. Murdoch, “Intermodal dispersion and polarization mode dispersion measurements in optical fibers using a self-modelocked Ti:sapphire laser,” Opt. Fiber Technol. 2, 80–84 (1996).
[CrossRef]

Duguay, M. A.

Favin, D. L.

C. D. Poole, D. L. Favin, “Polarization mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
[CrossRef]

Gutty, F.

J. M. Dudley, F. Gutty, S. Pitois, G. Millot, “Complete characterization of THz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

Jeunhomme, L.

M. Monerie, P. Lamouler, L. Jeunhomme, “Polarisation mode dispersion measurements in long single mode fibres,” Electron. Lett. 16, 907–908 (1980).
[CrossRef]

Lamouler, P.

M. Monerie, P. Lamouler, L. Jeunhomme, “Polarisation mode dispersion measurements in long single mode fibres,” Electron. Lett. 16, 907–908 (1980).
[CrossRef]

Meyerhofer, D. D.

Millot, G.

G. Millot, P. T. Dinda, E. Seve, S. Wabnitz, “Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers,” Opt. Fiber Technol. 7, 170–205 (2001).
[CrossRef]

J. M. Dudley, F. Gutty, S. Pitois, G. Millot, “Complete characterization of THz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

Mochizuki, K.

K. Mochizuki, Y. Namihira, H. Wakabayashi, “Polarisation mode dispersion measurements in long single mode fibres,” Electron. Lett. 17, 153–154 (1981).
[CrossRef]

Monerie, M.

M. Monerie, P. Lamouler, L. Jeunhomme, “Polarisation mode dispersion measurements in long single mode fibres,” Electron. Lett. 16, 907–908 (1980).
[CrossRef]

Murdoch, S. G.

J. M. Dudley, S. G. Murdoch, “Intermodal dispersion and polarization mode dispersion measurements in optical fibers using a self-modelocked Ti:sapphire laser,” Opt. Fiber Technol. 2, 80–84 (1996).
[CrossRef]

Namihira, Y.

K. Mochizuki, Y. Namihira, H. Wakabayashi, “Polarisation mode dispersion measurements in long single mode fibres,” Electron. Lett. 17, 153–154 (1981).
[CrossRef]

Noda, J.

K. Takada, J. Noda, Y. Sasaki, “Simple measurement method for polarisation modal dispersion in polarisation-maintaining fibres,” Electron. Lett. 19, 1015–1017 (1983).
[CrossRef]

Ouellette, F.

Painchaud, Y.

Pitois, S.

J. M. Dudley, F. Gutty, S. Pitois, G. Millot, “Complete characterization of THz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

Poole, C. D.

C. D. Poole, D. L. Favin, “Polarization mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
[CrossRef]

Rashleigh, S. C.

Saruwatari, M.

Y. Yamabayashi, M. Saruwatari, “New measurement method for polarisation dispersion in single-mode fibres employing frequency-modulated optical signal,” Electron. Lett. 19, 239–240 (1983).
[CrossRef]

Sasaki, Y.

K. Takada, J. Noda, Y. Sasaki, “Simple measurement method for polarisation modal dispersion in polarisation-maintaining fibres,” Electron. Lett. 19, 1015–1017 (1983).
[CrossRef]

Seikai, S.

N. Shibata, M. Tateda, S. Seikai, “Polarization mode dispersion measurement in elliptical core single-mode fibers by a spatial technique,” IEEE J. Quantum Electron. 18, 53–58 (1982).
[CrossRef]

Seve, E.

G. Millot, P. T. Dinda, E. Seve, S. Wabnitz, “Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers,” Opt. Fiber Technol. 7, 170–205 (2001).
[CrossRef]

Shibata, N.

N. Shibata, M. Tateda, S. Seikai, “Polarization mode dispersion measurement in elliptical core single-mode fibers by a spatial technique,” IEEE J. Quantum Electron. 18, 53–58 (1982).
[CrossRef]

Sinha, N. K.

N. K. Sinha, “Normalised dispersion of birefringence of quartz and stress optical coefficient of fused silica and plate glass,” Phys. Chem. Glasses. 19, 69–77 (1978).

Takada, K.

K. Takada, J. Noda, Y. Sasaki, “Simple measurement method for polarisation modal dispersion in polarisation-maintaining fibres,” Electron. Lett. 19, 1015–1017 (1983).
[CrossRef]

Tateda, M.

N. Shibata, M. Tateda, S. Seikai, “Polarization mode dispersion measurement in elliptical core single-mode fibers by a spatial technique,” IEEE J. Quantum Electron. 18, 53–58 (1982).
[CrossRef]

Urbanczyk, W.

Wabnitz, S.

G. Millot, P. T. Dinda, E. Seve, S. Wabnitz, “Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers,” Opt. Fiber Technol. 7, 170–205 (2001).
[CrossRef]

Wakabayashi, H.

K. Mochizuki, Y. Namihira, H. Wakabayashi, “Polarisation mode dispersion measurements in long single mode fibres,” Electron. Lett. 17, 153–154 (1981).
[CrossRef]

Yamabayashi, Y.

Y. Yamabayashi, M. Saruwatari, “New measurement method for polarisation dispersion in single-mode fibres employing frequency-modulated optical signal,” Electron. Lett. 19, 239–240 (1983).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (4)

M. Monerie, P. Lamouler, L. Jeunhomme, “Polarisation mode dispersion measurements in long single mode fibres,” Electron. Lett. 16, 907–908 (1980).
[CrossRef]

K. Mochizuki, Y. Namihira, H. Wakabayashi, “Polarisation mode dispersion measurements in long single mode fibres,” Electron. Lett. 17, 153–154 (1981).
[CrossRef]

K. Takada, J. Noda, Y. Sasaki, “Simple measurement method for polarisation modal dispersion in polarisation-maintaining fibres,” Electron. Lett. 19, 1015–1017 (1983).
[CrossRef]

Y. Yamabayashi, M. Saruwatari, “New measurement method for polarisation dispersion in single-mode fibres employing frequency-modulated optical signal,” Electron. Lett. 19, 239–240 (1983).
[CrossRef]

IEEE J. Quantum Electron. (2)

N. Shibata, M. Tateda, S. Seikai, “Polarization mode dispersion measurement in elliptical core single-mode fibers by a spatial technique,” IEEE J. Quantum Electron. 18, 53–58 (1982).
[CrossRef]

J. M. Dudley, F. Gutty, S. Pitois, G. Millot, “Complete characterization of THz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001).
[CrossRef]

J. Lightwave Technol. (1)

C. D. Poole, D. L. Favin, “Polarization mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
[CrossRef]

Opt. Fiber Technol. (2)

J. M. Dudley, S. G. Murdoch, “Intermodal dispersion and polarization mode dispersion measurements in optical fibers using a self-modelocked Ti:sapphire laser,” Opt. Fiber Technol. 2, 80–84 (1996).
[CrossRef]

G. Millot, P. T. Dinda, E. Seve, S. Wabnitz, “Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers,” Opt. Fiber Technol. 7, 170–205 (2001).
[CrossRef]

Opt. Lett. (3)

Phys. Chem. Glasses. (1)

N. K. Sinha, “Normalised dispersion of birefringence of quartz and stress optical coefficient of fused silica and plate glass,” Phys. Chem. Glasses. 19, 69–77 (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup used for measuring PMD: Ps, glan polarizers; A, analyzer; MOs, 40× microscope objectives; Fs, filters; HWP, half-wave plate; IF, interference filter.

Fig. 2
Fig. 2

Output experimental spectra for the slow axis of a polarization-maintaining fiber. The peak pump power is 200 W, and the fiber length is 14 m.

Fig. 3
Fig. 3

Typical output experimental spectra for light launched equally along the fast and the slow axes of a Fibercore HB600 high-birefringence fiber. Results are shown for the first and the fourth Raman Stokes lines and for two fiber lengths as indicated.

Fig. 4
Fig. 4

Table of results and graph of PMD measurements over a 510–550-THz frequency range. The straight line is a least-squares fit to the data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δβ(ω)=Δβ(ω0)+dΔβdωω0Ω+ 12d2Δβdω2ω0Ω2+ .
Δn=cdΔβdωω0-ω02d2Δβdω2 .

Metrics