Abstract

We describe a convenient lithographic technique that can produce simple, repetitive micropatterns over large areas (several square centimeters). The technique uses an illuminated array of micrometer-scale lenses to generate an array of optical patterns in an image plane located within micrometer distances from the lens array. A layer of photoresist, placed in the image plane, records the patterns. Microlenses with different sizes, profiles, composition, and indices of refraction produce corresponding patterns in exposed and developed photoresist. Both spherical and nonspherical microlenses were examined. Several types of optical element containing arrays of microlenses were fabricated and used to demonstrate that this technique can generate uniform micropatterns over large areas (>4 cm2) in a single exposure. The smallest features produced had dimensions of ∼100 nm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
    [CrossRef]
  2. E. A. Parker, S. M. A. Hamdy, R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17, 880–881 (1981).
    [CrossRef]
  3. K. J. Kogler, R. G. Paster, “Infrared filters fabricated from submicron loop antenna arrays,” Appl. Opt. 27, 18–19 (1988).
    [CrossRef] [PubMed]
  4. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton University, Princeton, N.J., 1995).
  5. C. Berger, N. Collings, R. Vökel, M. T. Gale, T. Hessler, “A microlens-array-based optical neural network application,” Pure Appl. Opt. 6, 683–689 (1997).
    [CrossRef]
  6. J. Schwider, W. Stork, N. Streibl, R. Vökel, “Possibilities and limitations of space-variant holographic optical elements for switching networks and general interconnections,” Appl. Opt. 31, 7403–7410 (1992).
    [CrossRef] [PubMed]
  7. R. Vökel, H. P. Herzig, P. Nussbaum, W. Singer, R. Dändliker, W. B. Hugle, “Microlens lithography: a new approach for large display fabrication,” Microelectron. Eng. 30, 107–110 (1996).
    [CrossRef]
  8. M. Ida, B. Montmayeul, R. Meyer, “New microlithography technique for large size field emission displays,” in Euro Display ’96: International Display Research Conference (American Society for International Science and Technology, Silver Spring, Md., 1996), pp. 177–180.
  9. W. M. Moreau, Semiconductor Lithography (Plenum, New York, 1989), Chap. 8.
  10. R. Dändliker, S. Gray, F. Clube, H. P. Herzig, R. Vökel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27, 205–211 (1995).
    [CrossRef]
  11. S. M. Sze, VLSI Technology (McGraw-Hill, Singapore, 1988), Chap. 4.3.
  12. M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
    [CrossRef]
  13. S. Hayashi, Y. Kumamoto, T. Suzuki, T. Hirai, “Imaging by polystyrene latex particles,” J. Colloid Interface Sci. 144, 538–547 (1991).
    [CrossRef]
  14. M.-H. Wu, G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection photolithography,” Appl. Phys. Lett. 78, 2273–2275 (2001).
    [CrossRef]
  15. P. Nussbaum, R. Vökel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication, and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
    [CrossRef]
  16. H. A. Biebuyck, G. M. Whitesides, “Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold,” Langmuir 10, 2790–2793 (1994).
    [CrossRef]
  17. Y. Lu, Y. Yin, Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13, 34–37 (2001).
    [CrossRef]
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  19. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  20. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 13.5.
  21. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  22. M. Sasaki, T. Kurosawa, K. Hane, “Micro-objective manipulated with optical tweezers,” Appl. Phys. Lett. 70, 785–787 (1997).
    [CrossRef]
  23. M. E. J. Friese, A. G. Truscott, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Three-dimensional imaging with optical tweezers,” Appl. Opt. 38, 6597–6603 (1999).
    [CrossRef]
  24. J. P. Brody, S. R. Quake, “A self-assembled microlensing rotational probe,” Appl. Phys. Lett. 74, 144–146 (1999).
    [CrossRef]
  25. T. Yamasaki, T. Tsutusi, “Fabrication and optical properties of two-dimensional ordered arrays of silica microspheres,” Jpn. J. Appl. Phys. 38, 5916–5921 (1999).
    [CrossRef]
  26. R. D. Pradhan, J. A. Bloodgood, G. H. Watson, “Photonic band structure of bcc colloidal crystals,” Phys. Rev. B 55, 9503–9507 (1997).
    [CrossRef]
  27. J. A. Rogers, K. E. Paul, G. M. Whitesides, “Qualifying distortion in soft lithography,” J. Vac. Sci. Technol. B 16, 88–97 (1998).
    [CrossRef]
  28. J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging profiles of light intensity in the near field: application to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
    [CrossRef]
  29. J. A. Rogers, O. J. A. Schueller, C. Marzolin, G. M. Whitesides, “Wave-front engineering by use of transparent elastomeric optical elements,” Appl. Opt. 36, 5792–5795 (1997).
    [CrossRef] [PubMed]
  30. J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
    [CrossRef]
  31. Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
    [CrossRef]
  32. A. Schilling, R. Merz, C. Ossmann, H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension,” Opt. Eng. 39, 2171–2176 (2000).
    [CrossRef]
  33. C. B. Gorman, H. A. Biebuyck, G. M. Whitesides, “Use of a patterned self-assembled monolayer to control the formation of a liquid resist pattern on a gold surface,” Chem. Mater. 7, 252–254 (1995).
    [CrossRef]
  34. E. Kim, G. M. Whitesides, L. K. Lee, S. P. Smith, M. Prentiss, “Fabrication of arrays of channel waveguides by self-assembly using patterned organic monolayers as templates,” Adv. Mater. 8, 139–142 (1996).
    [CrossRef]
  35. A. Kumar, G. M. Whitesides, “Patterned condensation figures as optical diffraction gratings,” Science 263, 60–62 (1994).
    [CrossRef] [PubMed]
  36. Y. Xia, E. Kim, X.-M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
    [CrossRef] [PubMed]
  37. E. Kim, Y. Xia, X.-M. Zhao, G. M. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
    [CrossRef]
  38. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8, 3183–3190 (1992).
    [CrossRef]
  39. J. L. Wilbur, R. J. Jackman, G. M. Whitesides, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
    [CrossRef]
  40. T. K. Wu, Frequency Selective Surface and Grid Array (Wiley, New York, 1995).
  41. V. Dhayalan, T. Standnes, J. Stamens, H. Heler, “Scalar and electromagnetic diffraction point-spread functions for high-NA microlenses,” Pure Appl. Opt. 6, 603–615 (1997).
    [CrossRef]
  42. C. Van Berkel, B. P. McGarvey, J. A. Clarke, “Microlens arrays for 2D large area image sensors,” Pure Appl. Opt. 3, 177–182 (1994).
    [CrossRef]

2001 (2)

M.-H. Wu, G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection photolithography,” Appl. Phys. Lett. 78, 2273–2275 (2001).
[CrossRef]

Y. Lu, Y. Yin, Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13, 34–37 (2001).
[CrossRef]

2000 (1)

A. Schilling, R. Merz, C. Ossmann, H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

1999 (3)

M. E. J. Friese, A. G. Truscott, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Three-dimensional imaging with optical tweezers,” Appl. Opt. 38, 6597–6603 (1999).
[CrossRef]

J. P. Brody, S. R. Quake, “A self-assembled microlensing rotational probe,” Appl. Phys. Lett. 74, 144–146 (1999).
[CrossRef]

T. Yamasaki, T. Tsutusi, “Fabrication and optical properties of two-dimensional ordered arrays of silica microspheres,” Jpn. J. Appl. Phys. 38, 5916–5921 (1999).
[CrossRef]

1998 (2)

1997 (8)

J. A. Rogers, O. J. A. Schueller, C. Marzolin, G. M. Whitesides, “Wave-front engineering by use of transparent elastomeric optical elements,” Appl. Opt. 36, 5792–5795 (1997).
[CrossRef] [PubMed]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

E. Kim, Y. Xia, X.-M. Zhao, G. M. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[CrossRef]

V. Dhayalan, T. Standnes, J. Stamens, H. Heler, “Scalar and electromagnetic diffraction point-spread functions for high-NA microlenses,” Pure Appl. Opt. 6, 603–615 (1997).
[CrossRef]

R. D. Pradhan, J. A. Bloodgood, G. H. Watson, “Photonic band structure of bcc colloidal crystals,” Phys. Rev. B 55, 9503–9507 (1997).
[CrossRef]

M. Sasaki, T. Kurosawa, K. Hane, “Micro-objective manipulated with optical tweezers,” Appl. Phys. Lett. 70, 785–787 (1997).
[CrossRef]

P. Nussbaum, R. Vökel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication, and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

C. Berger, N. Collings, R. Vökel, M. T. Gale, T. Hessler, “A microlens-array-based optical neural network application,” Pure Appl. Opt. 6, 683–689 (1997).
[CrossRef]

1996 (4)

R. Vökel, H. P. Herzig, P. Nussbaum, W. Singer, R. Dändliker, W. B. Hugle, “Microlens lithography: a new approach for large display fabrication,” Microelectron. Eng. 30, 107–110 (1996).
[CrossRef]

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
[CrossRef]

Y. Xia, E. Kim, X.-M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[CrossRef] [PubMed]

E. Kim, G. M. Whitesides, L. K. Lee, S. P. Smith, M. Prentiss, “Fabrication of arrays of channel waveguides by self-assembly using patterned organic monolayers as templates,” Adv. Mater. 8, 139–142 (1996).
[CrossRef]

1995 (2)

C. B. Gorman, H. A. Biebuyck, G. M. Whitesides, “Use of a patterned self-assembled monolayer to control the formation of a liquid resist pattern on a gold surface,” Chem. Mater. 7, 252–254 (1995).
[CrossRef]

R. Dändliker, S. Gray, F. Clube, H. P. Herzig, R. Vökel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27, 205–211 (1995).
[CrossRef]

1994 (5)

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

H. A. Biebuyck, G. M. Whitesides, “Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold,” Langmuir 10, 2790–2793 (1994).
[CrossRef]

A. Kumar, G. M. Whitesides, “Patterned condensation figures as optical diffraction gratings,” Science 263, 60–62 (1994).
[CrossRef] [PubMed]

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

C. Van Berkel, B. P. McGarvey, J. A. Clarke, “Microlens arrays for 2D large area image sensors,” Pure Appl. Opt. 3, 177–182 (1994).
[CrossRef]

1992 (2)

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8, 3183–3190 (1992).
[CrossRef]

J. Schwider, W. Stork, N. Streibl, R. Vökel, “Possibilities and limitations of space-variant holographic optical elements for switching networks and general interconnections,” Appl. Opt. 31, 7403–7410 (1992).
[CrossRef] [PubMed]

1991 (1)

S. Hayashi, Y. Kumamoto, T. Suzuki, T. Hirai, “Imaging by polystyrene latex particles,” J. Colloid Interface Sci. 144, 538–547 (1991).
[CrossRef]

1988 (1)

1985 (1)

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

1981 (1)

E. A. Parker, S. M. A. Hamdy, R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17, 880–881 (1981).
[CrossRef]

Aizenberg, J.

Berger, C.

C. Berger, N. Collings, R. Vökel, M. T. Gale, T. Hessler, “A microlens-array-based optical neural network application,” Pure Appl. Opt. 6, 683–689 (1997).
[CrossRef]

Biebuyck, H. A.

C. B. Gorman, H. A. Biebuyck, G. M. Whitesides, “Use of a patterned self-assembled monolayer to control the formation of a liquid resist pattern on a gold surface,” Chem. Mater. 7, 252–254 (1995).
[CrossRef]

H. A. Biebuyck, G. M. Whitesides, “Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold,” Langmuir 10, 2790–2793 (1994).
[CrossRef]

Bloodgood, J. A.

R. D. Pradhan, J. A. Bloodgood, G. H. Watson, “Photonic band structure of bcc colloidal crystals,” Phys. Rev. B 55, 9503–9507 (1997).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 13.5.

Brody, J. P.

J. P. Brody, S. R. Quake, “A self-assembled microlensing rotational probe,” Appl. Phys. Lett. 74, 144–146 (1999).
[CrossRef]

Brouns, A. J.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

Byrne, D. M.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

Case, F. C.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

Clarke, J. A.

C. Van Berkel, B. P. McGarvey, J. A. Clarke, “Microlens arrays for 2D large area image sensors,” Pure Appl. Opt. 3, 177–182 (1994).
[CrossRef]

Clube, F.

R. Dändliker, S. Gray, F. Clube, H. P. Herzig, R. Vökel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27, 205–211 (1995).
[CrossRef]

Collings, N.

C. Berger, N. Collings, R. Vökel, M. T. Gale, T. Hessler, “A microlens-array-based optical neural network application,” Pure Appl. Opt. 6, 683–689 (1997).
[CrossRef]

Dändliker, R.

R. Vökel, H. P. Herzig, P. Nussbaum, W. Singer, R. Dändliker, W. B. Hugle, “Microlens lithography: a new approach for large display fabrication,” Microelectron. Eng. 30, 107–110 (1996).
[CrossRef]

R. Dändliker, S. Gray, F. Clube, H. P. Herzig, R. Vökel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27, 205–211 (1995).
[CrossRef]

Denkov, N. D.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8, 3183–3190 (1992).
[CrossRef]

Dennis, C. L.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Dhayalan, V.

V. Dhayalan, T. Standnes, J. Stamens, H. Heler, “Scalar and electromagnetic diffraction point-spread functions for high-NA microlenses,” Pure Appl. Opt. 6, 603–615 (1997).
[CrossRef]

Eisner, M.

P. Nussbaum, R. Vökel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication, and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Friese, M. E. J.

Gale, M. T.

C. Berger, N. Collings, R. Vökel, M. T. Gale, T. Hessler, “A microlens-array-based optical neural network application,” Pure Appl. Opt. 6, 683–689 (1997).
[CrossRef]

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Gorman, C. B.

C. B. Gorman, H. A. Biebuyck, G. M. Whitesides, “Use of a patterned self-assembled monolayer to control the formation of a liquid resist pattern on a gold surface,” Chem. Mater. 7, 252–254 (1995).
[CrossRef]

Gray, S.

R. Dändliker, S. Gray, F. Clube, H. P. Herzig, R. Vökel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27, 205–211 (1995).
[CrossRef]

Hamdy, S. M. A.

E. A. Parker, S. M. A. Hamdy, R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17, 880–881 (1981).
[CrossRef]

Hane, K.

M. Sasaki, T. Kurosawa, K. Hane, “Micro-objective manipulated with optical tweezers,” Appl. Phys. Lett. 70, 785–787 (1997).
[CrossRef]

Haselbeck, S.

P. Nussbaum, R. Vökel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication, and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Hayashi, S.

S. Hayashi, Y. Kumamoto, T. Suzuki, T. Hirai, “Imaging by polystyrene latex particles,” J. Colloid Interface Sci. 144, 538–547 (1991).
[CrossRef]

Heckenberg, N. R.

Heler, H.

V. Dhayalan, T. Standnes, J. Stamens, H. Heler, “Scalar and electromagnetic diffraction point-spread functions for high-NA microlenses,” Pure Appl. Opt. 6, 603–615 (1997).
[CrossRef]

Herzig, H. P.

A. Schilling, R. Merz, C. Ossmann, H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

P. Nussbaum, R. Vökel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication, and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

R. Vökel, H. P. Herzig, P. Nussbaum, W. Singer, R. Dändliker, W. B. Hugle, “Microlens lithography: a new approach for large display fabrication,” Microelectron. Eng. 30, 107–110 (1996).
[CrossRef]

R. Dändliker, S. Gray, F. Clube, H. P. Herzig, R. Vökel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27, 205–211 (1995).
[CrossRef]

Hessler, T.

C. Berger, N. Collings, R. Vökel, M. T. Gale, T. Hessler, “A microlens-array-based optical neural network application,” Pure Appl. Opt. 6, 683–689 (1997).
[CrossRef]

Hirai, T.

S. Hayashi, Y. Kumamoto, T. Suzuki, T. Hirai, “Imaging by polystyrene latex particles,” J. Colloid Interface Sci. 144, 538–547 (1991).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Hugle, W. B.

R. Vökel, H. P. Herzig, P. Nussbaum, W. Singer, R. Dändliker, W. B. Hugle, “Microlens lithography: a new approach for large display fabrication,” Microelectron. Eng. 30, 107–110 (1996).
[CrossRef]

Ida, M.

M. Ida, B. Montmayeul, R. Meyer, “New microlithography technique for large size field emission displays,” in Euro Display ’96: International Display Research Conference (American Society for International Science and Technology, Silver Spring, Md., 1996), pp. 177–180.

Ivanov, I. B.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8, 3183–3190 (1992).
[CrossRef]

Jackman, R. J.

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton University, Princeton, N.J., 1995).

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Kim, E.

E. Kim, Y. Xia, X.-M. Zhao, G. M. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[CrossRef]

Y. Xia, E. Kim, X.-M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[CrossRef] [PubMed]

E. Kim, G. M. Whitesides, L. K. Lee, S. P. Smith, M. Prentiss, “Fabrication of arrays of channel waveguides by self-assembly using patterned organic monolayers as templates,” Adv. Mater. 8, 139–142 (1996).
[CrossRef]

Kogler, K. J.

Kralchevsky, P. A.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8, 3183–3190 (1992).
[CrossRef]

Kumamoto, Y.

S. Hayashi, Y. Kumamoto, T. Suzuki, T. Hirai, “Imaging by polystyrene latex particles,” J. Colloid Interface Sci. 144, 538–547 (1991).
[CrossRef]

Kumar, A.

A. Kumar, G. M. Whitesides, “Patterned condensation figures as optical diffraction gratings,” Science 263, 60–62 (1994).
[CrossRef] [PubMed]

Kurosawa, T.

M. Sasaki, T. Kurosawa, K. Hane, “Micro-objective manipulated with optical tweezers,” Appl. Phys. Lett. 70, 785–787 (1997).
[CrossRef]

Langley, R. J.

E. A. Parker, S. M. A. Hamdy, R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17, 880–881 (1981).
[CrossRef]

Lee, L. K.

E. Kim, G. M. Whitesides, L. K. Lee, S. P. Smith, M. Prentiss, “Fabrication of arrays of channel waveguides by self-assembly using patterned organic monolayers as templates,” Adv. Mater. 8, 139–142 (1996).
[CrossRef]

Liau, Z. L.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Lu, Y.

Y. Lu, Y. Yin, Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13, 34–37 (2001).
[CrossRef]

Marzolin, C.

McGarvey, B. P.

C. Van Berkel, B. P. McGarvey, J. A. Clarke, “Microlens arrays for 2D large area image sensors,” Pure Appl. Opt. 3, 177–182 (1994).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton University, Princeton, N.J., 1995).

Merz, R.

A. Schilling, R. Merz, C. Ossmann, H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

Meyer, R.

M. Ida, B. Montmayeul, R. Meyer, “New microlithography technique for large size field emission displays,” in Euro Display ’96: International Display Research Conference (American Society for International Science and Technology, Silver Spring, Md., 1996), pp. 177–180.

Montmayeul, B.

M. Ida, B. Montmayeul, R. Meyer, “New microlithography technique for large size field emission displays,” in Euro Display ’96: International Display Research Conference (American Society for International Science and Technology, Silver Spring, Md., 1996), pp. 177–180.

Moreau, W. M.

W. M. Moreau, Semiconductor Lithography (Plenum, New York, 1989), Chap. 8.

Mull, D. E.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Nagayama, K.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8, 3183–3190 (1992).
[CrossRef]

Nussbaum, P.

P. Nussbaum, R. Vökel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication, and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

R. Vökel, H. P. Herzig, P. Nussbaum, W. Singer, R. Dändliker, W. B. Hugle, “Microlens lithography: a new approach for large display fabrication,” Microelectron. Eng. 30, 107–110 (1996).
[CrossRef]

Ossmann, C.

A. Schilling, R. Merz, C. Ossmann, H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

Parker, E. A.

E. A. Parker, S. M. A. Hamdy, R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17, 880–881 (1981).
[CrossRef]

Paster, R. G.

Paul, K. E.

J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging profiles of light intensity in the near field: application to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
[CrossRef]

J. A. Rogers, K. E. Paul, G. M. Whitesides, “Qualifying distortion in soft lithography,” J. Vac. Sci. Technol. B 16, 88–97 (1998).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Pedersen, J.

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Pradhan, R. D.

R. D. Pradhan, J. A. Bloodgood, G. H. Watson, “Photonic band structure of bcc colloidal crystals,” Phys. Rev. B 55, 9503–9507 (1997).
[CrossRef]

Prentiss, M.

Y. Xia, E. Kim, X.-M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[CrossRef] [PubMed]

E. Kim, G. M. Whitesides, L. K. Lee, S. P. Smith, M. Prentiss, “Fabrication of arrays of channel waveguides by self-assembly using patterned organic monolayers as templates,” Adv. Mater. 8, 139–142 (1996).
[CrossRef]

Quake, S. R.

J. P. Brody, S. R. Quake, “A self-assembled microlensing rotational probe,” Appl. Phys. Lett. 74, 144–146 (1999).
[CrossRef]

Rogers, J. A.

J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging profiles of light intensity in the near field: application to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
[CrossRef]

J. A. Rogers, K. E. Paul, G. M. Whitesides, “Qualifying distortion in soft lithography,” J. Vac. Sci. Technol. B 16, 88–97 (1998).
[CrossRef]

J. A. Rogers, O. J. A. Schueller, C. Marzolin, G. M. Whitesides, “Wave-front engineering by use of transparent elastomeric optical elements,” Appl. Opt. 36, 5792–5795 (1997).
[CrossRef] [PubMed]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Y. Xia, E. Kim, X.-M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[CrossRef] [PubMed]

Rossi, M.

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Rubinsztein-Dunlop, H.

Sasaki, M.

M. Sasaki, T. Kurosawa, K. Hane, “Micro-objective manipulated with optical tweezers,” Appl. Phys. Lett. 70, 785–787 (1997).
[CrossRef]

Schilling, A.

A. Schilling, R. Merz, C. Ossmann, H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

Schueller, O. J. A.

Schutz, H.

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Schwider, J.

Singer, W.

R. Vökel, H. P. Herzig, P. Nussbaum, W. Singer, R. Dändliker, W. B. Hugle, “Microlens lithography: a new approach for large display fabrication,” Microelectron. Eng. 30, 107–110 (1996).
[CrossRef]

Smith, S. P.

E. Kim, G. M. Whitesides, L. K. Lee, S. P. Smith, M. Prentiss, “Fabrication of arrays of channel waveguides by self-assembly using patterned organic monolayers as templates,” Adv. Mater. 8, 139–142 (1996).
[CrossRef]

Stamens, J.

V. Dhayalan, T. Standnes, J. Stamens, H. Heler, “Scalar and electromagnetic diffraction point-spread functions for high-NA microlenses,” Pure Appl. Opt. 6, 603–615 (1997).
[CrossRef]

Standnes, T.

V. Dhayalan, T. Standnes, J. Stamens, H. Heler, “Scalar and electromagnetic diffraction point-spread functions for high-NA microlenses,” Pure Appl. Opt. 6, 603–615 (1997).
[CrossRef]

Stork, W.

Streibl, N.

Suzuki, T.

S. Hayashi, Y. Kumamoto, T. Suzuki, T. Hirai, “Imaging by polystyrene latex particles,” J. Colloid Interface Sci. 144, 538–547 (1991).
[CrossRef]

Sze, S. M.

S. M. Sze, VLSI Technology (McGraw-Hill, Singapore, 1988), Chap. 4.3.

Tiberio, R. C.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

Truscott, A. G.

Tsutusi, T.

T. Yamasaki, T. Tsutusi, “Fabrication and optical properties of two-dimensional ordered arrays of silica microspheres,” Jpn. J. Appl. Phys. 38, 5916–5921 (1999).
[CrossRef]

Van Berkel, C.

C. Van Berkel, B. P. McGarvey, J. A. Clarke, “Microlens arrays for 2D large area image sensors,” Pure Appl. Opt. 3, 177–182 (1994).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Velev, O. D.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8, 3183–3190 (1992).
[CrossRef]

Vökel, R.

C. Berger, N. Collings, R. Vökel, M. T. Gale, T. Hessler, “A microlens-array-based optical neural network application,” Pure Appl. Opt. 6, 683–689 (1997).
[CrossRef]

P. Nussbaum, R. Vökel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication, and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

R. Vökel, H. P. Herzig, P. Nussbaum, W. Singer, R. Dändliker, W. B. Hugle, “Microlens lithography: a new approach for large display fabrication,” Microelectron. Eng. 30, 107–110 (1996).
[CrossRef]

R. Dändliker, S. Gray, F. Clube, H. P. Herzig, R. Vökel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27, 205–211 (1995).
[CrossRef]

J. Schwider, W. Stork, N. Streibl, R. Vökel, “Possibilities and limitations of space-variant holographic optical elements for switching networks and general interconnections,” Appl. Opt. 31, 7403–7410 (1992).
[CrossRef] [PubMed]

Waarts, R. G.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Watson, G. H.

R. D. Pradhan, J. A. Bloodgood, G. H. Watson, “Photonic band structure of bcc colloidal crystals,” Phys. Rev. B 55, 9503–9507 (1997).
[CrossRef]

Whitehead, B. L.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

Whitesides, G. M.

M.-H. Wu, G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection photolithography,” Appl. Phys. Lett. 78, 2273–2275 (2001).
[CrossRef]

J. A. Rogers, K. E. Paul, G. M. Whitesides, “Qualifying distortion in soft lithography,” J. Vac. Sci. Technol. B 16, 88–97 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging profiles of light intensity in the near field: application to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
[CrossRef]

J. A. Rogers, O. J. A. Schueller, C. Marzolin, G. M. Whitesides, “Wave-front engineering by use of transparent elastomeric optical elements,” Appl. Opt. 36, 5792–5795 (1997).
[CrossRef] [PubMed]

E. Kim, Y. Xia, X.-M. Zhao, G. M. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

E. Kim, G. M. Whitesides, L. K. Lee, S. P. Smith, M. Prentiss, “Fabrication of arrays of channel waveguides by self-assembly using patterned organic monolayers as templates,” Adv. Mater. 8, 139–142 (1996).
[CrossRef]

Y. Xia, E. Kim, X.-M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[CrossRef] [PubMed]

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
[CrossRef]

C. B. Gorman, H. A. Biebuyck, G. M. Whitesides, “Use of a patterned self-assembled monolayer to control the formation of a liquid resist pattern on a gold surface,” Chem. Mater. 7, 252–254 (1995).
[CrossRef]

A. Kumar, G. M. Whitesides, “Patterned condensation figures as optical diffraction gratings,” Science 263, 60–62 (1994).
[CrossRef] [PubMed]

H. A. Biebuyck, G. M. Whitesides, “Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold,” Langmuir 10, 2790–2793 (1994).
[CrossRef]

Wilbur, J. L.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
[CrossRef]

Williamson, R. C.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton University, Princeton, N.J., 1995).

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 13.5.

Wolf, E. D.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

Wu, M.-H.

M.-H. Wu, G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection photolithography,” Appl. Phys. Lett. 78, 2273–2275 (2001).
[CrossRef]

Wu, T. K.

T. K. Wu, Frequency Selective Surface and Grid Array (Wiley, New York, 1995).

Xia, Y.

Y. Lu, Y. Yin, Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13, 34–37 (2001).
[CrossRef]

E. Kim, Y. Xia, X.-M. Zhao, G. M. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[CrossRef]

Y. Xia, E. Kim, X.-M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[CrossRef] [PubMed]

Yamasaki, T.

T. Yamasaki, T. Tsutusi, “Fabrication and optical properties of two-dimensional ordered arrays of silica microspheres,” Jpn. J. Appl. Phys. 38, 5916–5921 (1999).
[CrossRef]

Yin, Y.

Y. Lu, Y. Yin, Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13, 34–37 (2001).
[CrossRef]

Yoshimura, H.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8, 3183–3190 (1992).
[CrossRef]

Zhao, X.-M.

E. Kim, Y. Xia, X.-M. Zhao, G. M. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[CrossRef]

Y. Xia, E. Kim, X.-M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[CrossRef] [PubMed]

Adv. Mater. (3)

Y. Lu, Y. Yin, Y. Xia, “A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers,” Adv. Mater. 13, 34–37 (2001).
[CrossRef]

E. Kim, G. M. Whitesides, L. K. Lee, S. P. Smith, M. Prentiss, “Fabrication of arrays of channel waveguides by self-assembly using patterned organic monolayers as templates,” Adv. Mater. 8, 139–142 (1996).
[CrossRef]

E. Kim, Y. Xia, X.-M. Zhao, G. M. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (5)

M.-H. Wu, G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection photolithography,” Appl. Phys. Lett. 78, 2273–2275 (2001).
[CrossRef]

J. P. Brody, S. R. Quake, “A self-assembled microlensing rotational probe,” Appl. Phys. Lett. 74, 144–146 (1999).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

M. Sasaki, T. Kurosawa, K. Hane, “Micro-objective manipulated with optical tweezers,” Appl. Phys. Lett. 70, 785–787 (1997).
[CrossRef]

Chem. Mater. (2)

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
[CrossRef]

C. B. Gorman, H. A. Biebuyck, G. M. Whitesides, “Use of a patterned self-assembled monolayer to control the formation of a liquid resist pattern on a gold surface,” Chem. Mater. 7, 252–254 (1995).
[CrossRef]

Electron. Lett. (1)

E. A. Parker, S. M. A. Hamdy, R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17, 880–881 (1981).
[CrossRef]

J. Colloid Interface Sci. (1)

S. Hayashi, Y. Kumamoto, T. Suzuki, T. Hirai, “Imaging by polystyrene latex particles,” J. Colloid Interface Sci. 144, 538–547 (1991).
[CrossRef]

J. Vac. Sci. Technol. B (2)

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, E. D. Wolf, “Infrared mesh filters fabricated by electron-beam lithography,” J. Vac. Sci. Technol. B 3, 268–271 (1985).
[CrossRef]

J. A. Rogers, K. E. Paul, G. M. Whitesides, “Qualifying distortion in soft lithography,” J. Vac. Sci. Technol. B 16, 88–97 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Yamasaki, T. Tsutusi, “Fabrication and optical properties of two-dimensional ordered arrays of silica microspheres,” Jpn. J. Appl. Phys. 38, 5916–5921 (1999).
[CrossRef]

Langmuir (2)

H. A. Biebuyck, G. M. Whitesides, “Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold,” Langmuir 10, 2790–2793 (1994).
[CrossRef]

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8, 3183–3190 (1992).
[CrossRef]

Microelectron. Eng. (2)

R. Dändliker, S. Gray, F. Clube, H. P. Herzig, R. Vökel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27, 205–211 (1995).
[CrossRef]

R. Vökel, H. P. Herzig, P. Nussbaum, W. Singer, R. Dändliker, W. B. Hugle, “Microlens lithography: a new approach for large display fabrication,” Microelectron. Eng. 30, 107–110 (1996).
[CrossRef]

Opt. Eng. (2)

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

A. Schilling, R. Merz, C. Ossmann, H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension,” Opt. Eng. 39, 2171–2176 (2000).
[CrossRef]

Phys. Rev. B (1)

R. D. Pradhan, J. A. Bloodgood, G. H. Watson, “Photonic band structure of bcc colloidal crystals,” Phys. Rev. B 55, 9503–9507 (1997).
[CrossRef]

Pure Appl. Opt. (4)

C. Berger, N. Collings, R. Vökel, M. T. Gale, T. Hessler, “A microlens-array-based optical neural network application,” Pure Appl. Opt. 6, 683–689 (1997).
[CrossRef]

P. Nussbaum, R. Vökel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication, and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

V. Dhayalan, T. Standnes, J. Stamens, H. Heler, “Scalar and electromagnetic diffraction point-spread functions for high-NA microlenses,” Pure Appl. Opt. 6, 603–615 (1997).
[CrossRef]

C. Van Berkel, B. P. McGarvey, J. A. Clarke, “Microlens arrays for 2D large area image sensors,” Pure Appl. Opt. 3, 177–182 (1994).
[CrossRef]

Science (2)

A. Kumar, G. M. Whitesides, “Patterned condensation figures as optical diffraction gratings,” Science 263, 60–62 (1994).
[CrossRef] [PubMed]

Y. Xia, E. Kim, X.-M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, “Complex optical surfaces formed by replica molding against elastomeric masters,” Science 273, 347–349 (1996).
[CrossRef] [PubMed]

Other (9)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 13.5.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

S. M. Sze, VLSI Technology (McGraw-Hill, Singapore, 1988), Chap. 4.3.

M. Ida, B. Montmayeul, R. Meyer, “New microlithography technique for large size field emission displays,” in Euro Display ’96: International Display Research Conference (American Society for International Science and Technology, Silver Spring, Md., 1996), pp. 177–180.

W. M. Moreau, Semiconductor Lithography (Plenum, New York, 1989), Chap. 8.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton University, Princeton, N.J., 1995).

T. K. Wu, Frequency Selective Surface and Grid Array (Wiley, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Schematic illustration comparing patterns formed by use of PDMS membranes with (left) and without (right) a spacer of thickness t between the embedded spheres and the surfaces of the membranes. Note that use of the spacer shown on the right-hand side localizes the light in the photoresist layer more than without the spacer and results in smaller patterns. (b) Photomicrograph of a 2-D crystal of 10-µm polystyrene spheres. (c)–(e) A series of optical micropatterns produced by the 10-µm polystyrene spheres with image distance d i = -0.8, 0.0, and 4.6 µm, respectively. The orientation of the array of microspheres is the same in each picture.

Fig. 2
Fig. 2

(a) SEM image of a 5 µm × 5 µm grid lens. (b)–(d) Photomicrographs of a series of optical micropatterns generated by the grid lens shown in (a) with image distance d i = 5, 8.3, and 19 µm, respectively.

Fig. 3
Fig. 3

Illustration of the fabrication of a PDMS membrane with a 2-D crystalline array of embedded microspheres. The spheres are separated from the surface of the membrane by a distance t, equal to the thickness of the PDMS spacer.

Fig. 4
Fig. 4

Fabrication of wedge-shaped membranes with a 2-D array of microspheres embedded in the surface. The top figure illustrates the oblique illumination on microspheres with a wedge-shaped membrane.

Fig. 5
Fig. 5

Fabrication of microlenses by various methods: (a) melting and reflow of photoresist, (b) self-assembly of liquid polymers on functionalized surfaces, (c) solvent-assisted embossing.

Fig. 6
Fig. 6

SEM images of plano-convex microlenses with different shapes and arrangements. (a) A square array of 5-µm circular disks of photoresist with a 15-µm pitch; (b) the disks of photoresist were melted on a hot plate, and the reflow of photoresist formed a curved surface; (c) a square array of 10-µm plano-convex lenses; (d) A 5 µm × 5 µm array of cylindrical microlenses.

Fig. 7
Fig. 7

Absorption spectrum of PDMS. This spectrum shows that PDMS (as a membrane ∼1 cm thick) absorbs less than 5% of incident UV illumination for the wavelength ranging from 365 to 436 nm. PDMS is transparent to UV light in this wavelength range.

Fig. 8
Fig. 8

SEM images of four representative patterns on photoresist generated by use of PDMS membranes with high-index spheres (PS spheres) embedded close to its surface (t = 0). (a) A ring-shaped micropattern generated by an individual 3-µm PS sphere, (b) a triangular array of hexagonal holes generated by a 2-D crystal of 3-µm spheres, (c) a triangular array of circular holes produced by a 2-D crystal of 1-µm PS spheres, (d) a pattern generated by a 2-D crystal of 10-µm PS spheres.

Fig. 9
Fig. 9

SEM images of three representative patterns on photoresist generated by use of PDMS membranes with low-index spheres (air or silica spheres) embedded in the surface. (a) A pattern generated by an individual 1-µm air sphere, (b) a pattern generated by a triangular array of 1-µm air spheres, (c) a pattern generated by a 2-D hexagonal crystal of 1.4-µm silica spheres.

Fig. 10
Fig. 10

SEM images of patterns of metal thin films (35-nm Au on 5-nm Ti) formed by lift-off of photoresist. The resist layer was patterned with PS spheres for photolithography (t = 0). (a) A pattern generated by a 1-µm PS sphere; (b) a pattern generated by a 2-D array of 1-µm PS spheres; (c) and (d) patterns produced with 3- and 10-µm PS spheres, respectively.

Fig. 11
Fig. 11

SEM images showing a comparison between patterns of photoresist generated with PDMS membranes with and without a spacer between the embedded spheres and the surfaces of the membranes. (a) and (c) Arrays of micropatterns produced by embedded 2-D crystals of 3-µm spheres: (a) without a spacer and (c) with a 3-µm PDMS spacer. (b) and (d) Arrays of micropatterns produced by 2-D crystals of embedded 10-µm PS spheres embedded in PDMS: (b) without a spacer and (d) with a 10-µm PDMS spacer.

Fig. 12
Fig. 12

SEM images of patterns on photoresist generated by use of wedge-shaped PDMS membranes (θ = 45°) with a 2-D crystal of PS spheres embedded in the surface. (a) A horseshoe-shaped pattern generated by an individual embedded 3-µm PS sphere. (b) and (c) Arrays of micropatterns produced by embedded 2-D crystals of PS spheres by (b) 3-µm spheres and (c) 1-µm spheres.

Fig. 13
Fig. 13

SEM images of patterns on photoresist generated by oblique illumination. (a) A pattern generated by an individual 1-µm PS sphere embedded in a PDMS membrane tilted at 50°. (b) and (c) Patterns generated by a 2-D crystal of a 1-µm PS sphere embedded in a PDMS membrane tilted at different angles: (b) tilted at 50° and (c) tilted at 70°. (d) A pattern generated by an embedded 2-D crystal of 3-µm PS spheres with a 3-µm spacer; the PDMS membrane was tilted at 70°.

Fig. 14
Fig. 14

SEM images of patterns generated by arrays of plano-convex microlenses. (a) A pattern generated by a square array of 10-µm plano-convex lenses [Fig. 6(c)] with a 13-µm air gap. The image distance is 10 µm. (b) An array of parallel trenches in photoresist produced by the 5 µm × 5 µm array of cylindrical microlenses [Fig. 6(d)] with a 5-µm air gap. (c) and (d) Patterns generated with the 5 µm × 5 µm grid lens shown in Fig. 2(a) with different spacers: (c) without a spacer and (d) with an 8-µm PDMS spacer coated on the grid lens.

Metrics