Abstract

Greenhouse-grown plants of Agave tequilana Weber var. azul were inoculated with Erwinia carotovora, the causal agent of stem soft rot. We investigated the laser-induced fluorescence (LIF) of agave plants to determine whether LIF can be used as a noninvasive sensing tool for pathological studies. The LIF technique was also investigated as a means of detecting the effect of the polyamine biosynthesis inhibitor β-hydroxyethylhydrazine as a bactericide against the pathogenic bacterium Erwinia carotovora. A He-Ne laser at 632.8 nm was used as the excitation source, and in vivo fluorescence emission spectra were recorded in the 660–790-range. Fluorescence maxima were at 690 and 740 nm. The infected plants that were untreated with the bactericide showed a definite increase in fluorescence intensity at both maxima within the first three days after infection. Beginning on the fifth day, a steady decrease in fluorescence intensity was observed, with a greater effect at 740 than at 690 nm. After 30 days there was no fluorescence. The infected plants that had been treated with the bactericide showed no significant change in fluorescence compared with that of the uninfected plants. The ratio of fluorescence intensities was determined to be F 690 nm/F 740 nm for all treatments. These studies indicate that LIF measurements of agave plants may be used for the early detection of certain types of disease and for determining the effect of a bactericide on bacteria. The results also showed that fluorescence intensity ratios can be used as a reliable indicator of the progress of disease.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Cedeño, “Tequila production,” Crit. Rev. Biotechnol. 15, 1–11 (1995).
    [CrossRef] [PubMed]
  2. B. Rodríguez-Garay, A. Gutiérrez-Mora, F. Santacruz-Ruvalcaba, Métodos de Propagación Biotecnológicos y Convencionales en Agaváceas para Zonas Áridas (Izquierdo J y G Palomino). Técnicas convencionales y biotecnológicas para la propagación de plantas de zonas áridas (Oficina Regional de la Food and Agriculture Organization para América Latina y el Caribe, Santiago, Chile, 1996), pp. 57–81.
  3. G. C. Vélez, Alvarez de la C. y B. Rodríguez-Garay, “Aislamiento de Erwinia del grupo carotovora como patógeno del Agave tequilana,” presented at the XXIII Congreso Nacional de Fitopatología, Guadalajara, Mexico, 25–28 Sept. 1996.
  4. G. N. Agrios, Plant Pathology (Academic, New York, 1997), Chap. 1.
  5. E. W. Chappelle, J. E. McMurtrey, F. M. Wood, W. W. Newcomb, “Laser-induced fluorescence of green plants. 2. LIF caused by nutrient deficiencies in corn,” Appl. Opt. 23, 139–142 (1984).
    [CrossRef]
  6. H. K. Lichtenthaler, “In vivo chlorophyll fluorescence as a tool for stress detection in plants,” in Applications of Chlorophyll Fluorescence, H. J. Lichtenthaler, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1988), pp. 129–142.
  7. K. P. Günther, H. G. Dahn, W. Lüdeker, “Remote sensing vegetation status by laser-induced fluorescence,” Remote Sens. Environ. 47, 10–17 (1994).
    [CrossRef]
  8. H. K. Lichtenthaler, U. Rinderle, “The role of chlorophyll fluorescence in detection of stress in plants,” CRC Crit. Rev. Anal. Chem. Suppl. I 19, 529–585 (1988).
  9. E. W. Chappelle, F. M. Wood, J. E. McMurtrey, W. W. Newcomb, “Laser-induced fluorescence of green plants. 1. A technique for the remote detection of plant stress and species differentiation,” Appl. Opt. 23, 134–138 (1984).
    [CrossRef]
  10. Y. Saito, M. Kanoh, K. Hatake, T. D. Kawahara, A. Nomura, “Investigation of laser-induced fluorescence of several natural leaves for application to lidar monitoring,” Appl. Opt. 37, 431–437 (1998).
    [CrossRef]
  11. S. Balachandran, V. M. Hurry, S. E. Kelley, C. B. Osmond, S. A. Robinson, J. Rohozinski, G. G. R. Seaton, D. A. Sims, “Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis,” Plant Physiol. 100, 203–213 (1997).
    [CrossRef]
  12. E. W. Chappelle, H. K. Lichtenthaler, eds., special issue on fluorescence measurements of vegetation, Remote Sens. Environ. 47, 1–105 (1994).
  13. J. Cervantes-Martínez, R. Flores-Hernández, B. Rodríguez-Garay, “Effect of high and low temperatures on the in vivo laser-induced fluorescence parameters of Agave tequilana Weber var. azul,” Phyton. 2001, 237–243 (2001).
  14. I. C. F. Santos, A. A. F. De Almeida, R. R. Valle, “Chlorophyll fluorescence parameters characterizing the development of two cacao genotypes infected by witches’ broom,” Photosynthetica 35, 29–39 (1998).
    [CrossRef]
  15. T. Stuhlfauth, D. F. Sültemeyer, S. Weinz, H. P. Fock, “Fluorescence quenching and gas exchange in a water stressed C3 plant, Digitalis lanata,” Plant Physiol. 86, 246–250 (1988).
    [CrossRef] [PubMed]

2001 (1)

J. Cervantes-Martínez, R. Flores-Hernández, B. Rodríguez-Garay, “Effect of high and low temperatures on the in vivo laser-induced fluorescence parameters of Agave tequilana Weber var. azul,” Phyton. 2001, 237–243 (2001).

1998 (2)

I. C. F. Santos, A. A. F. De Almeida, R. R. Valle, “Chlorophyll fluorescence parameters characterizing the development of two cacao genotypes infected by witches’ broom,” Photosynthetica 35, 29–39 (1998).
[CrossRef]

Y. Saito, M. Kanoh, K. Hatake, T. D. Kawahara, A. Nomura, “Investigation of laser-induced fluorescence of several natural leaves for application to lidar monitoring,” Appl. Opt. 37, 431–437 (1998).
[CrossRef]

1997 (1)

S. Balachandran, V. M. Hurry, S. E. Kelley, C. B. Osmond, S. A. Robinson, J. Rohozinski, G. G. R. Seaton, D. A. Sims, “Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis,” Plant Physiol. 100, 203–213 (1997).
[CrossRef]

1995 (1)

G. M. Cedeño, “Tequila production,” Crit. Rev. Biotechnol. 15, 1–11 (1995).
[CrossRef] [PubMed]

1994 (2)

K. P. Günther, H. G. Dahn, W. Lüdeker, “Remote sensing vegetation status by laser-induced fluorescence,” Remote Sens. Environ. 47, 10–17 (1994).
[CrossRef]

E. W. Chappelle, H. K. Lichtenthaler, eds., special issue on fluorescence measurements of vegetation, Remote Sens. Environ. 47, 1–105 (1994).

1988 (2)

T. Stuhlfauth, D. F. Sültemeyer, S. Weinz, H. P. Fock, “Fluorescence quenching and gas exchange in a water stressed C3 plant, Digitalis lanata,” Plant Physiol. 86, 246–250 (1988).
[CrossRef] [PubMed]

H. K. Lichtenthaler, U. Rinderle, “The role of chlorophyll fluorescence in detection of stress in plants,” CRC Crit. Rev. Anal. Chem. Suppl. I 19, 529–585 (1988).

1984 (2)

Agrios, G. N.

G. N. Agrios, Plant Pathology (Academic, New York, 1997), Chap. 1.

Balachandran, S.

S. Balachandran, V. M. Hurry, S. E. Kelley, C. B. Osmond, S. A. Robinson, J. Rohozinski, G. G. R. Seaton, D. A. Sims, “Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis,” Plant Physiol. 100, 203–213 (1997).
[CrossRef]

Cedeño, G. M.

G. M. Cedeño, “Tequila production,” Crit. Rev. Biotechnol. 15, 1–11 (1995).
[CrossRef] [PubMed]

Cervantes-Martínez, J.

J. Cervantes-Martínez, R. Flores-Hernández, B. Rodríguez-Garay, “Effect of high and low temperatures on the in vivo laser-induced fluorescence parameters of Agave tequilana Weber var. azul,” Phyton. 2001, 237–243 (2001).

Chappelle, E. W.

Dahn, H. G.

K. P. Günther, H. G. Dahn, W. Lüdeker, “Remote sensing vegetation status by laser-induced fluorescence,” Remote Sens. Environ. 47, 10–17 (1994).
[CrossRef]

De Almeida, A. A. F.

I. C. F. Santos, A. A. F. De Almeida, R. R. Valle, “Chlorophyll fluorescence parameters characterizing the development of two cacao genotypes infected by witches’ broom,” Photosynthetica 35, 29–39 (1998).
[CrossRef]

Flores-Hernández, R.

J. Cervantes-Martínez, R. Flores-Hernández, B. Rodríguez-Garay, “Effect of high and low temperatures on the in vivo laser-induced fluorescence parameters of Agave tequilana Weber var. azul,” Phyton. 2001, 237–243 (2001).

Fock, H. P.

T. Stuhlfauth, D. F. Sültemeyer, S. Weinz, H. P. Fock, “Fluorescence quenching and gas exchange in a water stressed C3 plant, Digitalis lanata,” Plant Physiol. 86, 246–250 (1988).
[CrossRef] [PubMed]

Günther, K. P.

K. P. Günther, H. G. Dahn, W. Lüdeker, “Remote sensing vegetation status by laser-induced fluorescence,” Remote Sens. Environ. 47, 10–17 (1994).
[CrossRef]

Gutiérrez-Mora, A.

B. Rodríguez-Garay, A. Gutiérrez-Mora, F. Santacruz-Ruvalcaba, Métodos de Propagación Biotecnológicos y Convencionales en Agaváceas para Zonas Áridas (Izquierdo J y G Palomino). Técnicas convencionales y biotecnológicas para la propagación de plantas de zonas áridas (Oficina Regional de la Food and Agriculture Organization para América Latina y el Caribe, Santiago, Chile, 1996), pp. 57–81.

Hatake, K.

Hurry, V. M.

S. Balachandran, V. M. Hurry, S. E. Kelley, C. B. Osmond, S. A. Robinson, J. Rohozinski, G. G. R. Seaton, D. A. Sims, “Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis,” Plant Physiol. 100, 203–213 (1997).
[CrossRef]

Kanoh, M.

Kawahara, T. D.

Kelley, S. E.

S. Balachandran, V. M. Hurry, S. E. Kelley, C. B. Osmond, S. A. Robinson, J. Rohozinski, G. G. R. Seaton, D. A. Sims, “Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis,” Plant Physiol. 100, 203–213 (1997).
[CrossRef]

Lichtenthaler, H. K.

H. K. Lichtenthaler, U. Rinderle, “The role of chlorophyll fluorescence in detection of stress in plants,” CRC Crit. Rev. Anal. Chem. Suppl. I 19, 529–585 (1988).

H. K. Lichtenthaler, “In vivo chlorophyll fluorescence as a tool for stress detection in plants,” in Applications of Chlorophyll Fluorescence, H. J. Lichtenthaler, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1988), pp. 129–142.

Lüdeker, W.

K. P. Günther, H. G. Dahn, W. Lüdeker, “Remote sensing vegetation status by laser-induced fluorescence,” Remote Sens. Environ. 47, 10–17 (1994).
[CrossRef]

McMurtrey, J. E.

Newcomb, W. W.

Nomura, A.

Osmond, C. B.

S. Balachandran, V. M. Hurry, S. E. Kelley, C. B. Osmond, S. A. Robinson, J. Rohozinski, G. G. R. Seaton, D. A. Sims, “Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis,” Plant Physiol. 100, 203–213 (1997).
[CrossRef]

Rinderle, U.

H. K. Lichtenthaler, U. Rinderle, “The role of chlorophyll fluorescence in detection of stress in plants,” CRC Crit. Rev. Anal. Chem. Suppl. I 19, 529–585 (1988).

Robinson, S. A.

S. Balachandran, V. M. Hurry, S. E. Kelley, C. B. Osmond, S. A. Robinson, J. Rohozinski, G. G. R. Seaton, D. A. Sims, “Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis,” Plant Physiol. 100, 203–213 (1997).
[CrossRef]

Rodríguez-Garay, Alvarez de la C. y B.

G. C. Vélez, Alvarez de la C. y B. Rodríguez-Garay, “Aislamiento de Erwinia del grupo carotovora como patógeno del Agave tequilana,” presented at the XXIII Congreso Nacional de Fitopatología, Guadalajara, Mexico, 25–28 Sept. 1996.

Rodríguez-Garay, B.

J. Cervantes-Martínez, R. Flores-Hernández, B. Rodríguez-Garay, “Effect of high and low temperatures on the in vivo laser-induced fluorescence parameters of Agave tequilana Weber var. azul,” Phyton. 2001, 237–243 (2001).

B. Rodríguez-Garay, A. Gutiérrez-Mora, F. Santacruz-Ruvalcaba, Métodos de Propagación Biotecnológicos y Convencionales en Agaváceas para Zonas Áridas (Izquierdo J y G Palomino). Técnicas convencionales y biotecnológicas para la propagación de plantas de zonas áridas (Oficina Regional de la Food and Agriculture Organization para América Latina y el Caribe, Santiago, Chile, 1996), pp. 57–81.

Rohozinski, J.

S. Balachandran, V. M. Hurry, S. E. Kelley, C. B. Osmond, S. A. Robinson, J. Rohozinski, G. G. R. Seaton, D. A. Sims, “Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis,” Plant Physiol. 100, 203–213 (1997).
[CrossRef]

Saito, Y.

Santacruz-Ruvalcaba, F.

B. Rodríguez-Garay, A. Gutiérrez-Mora, F. Santacruz-Ruvalcaba, Métodos de Propagación Biotecnológicos y Convencionales en Agaváceas para Zonas Áridas (Izquierdo J y G Palomino). Técnicas convencionales y biotecnológicas para la propagación de plantas de zonas áridas (Oficina Regional de la Food and Agriculture Organization para América Latina y el Caribe, Santiago, Chile, 1996), pp. 57–81.

Santos, I. C. F.

I. C. F. Santos, A. A. F. De Almeida, R. R. Valle, “Chlorophyll fluorescence parameters characterizing the development of two cacao genotypes infected by witches’ broom,” Photosynthetica 35, 29–39 (1998).
[CrossRef]

Seaton, G. G. R.

S. Balachandran, V. M. Hurry, S. E. Kelley, C. B. Osmond, S. A. Robinson, J. Rohozinski, G. G. R. Seaton, D. A. Sims, “Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis,” Plant Physiol. 100, 203–213 (1997).
[CrossRef]

Sims, D. A.

S. Balachandran, V. M. Hurry, S. E. Kelley, C. B. Osmond, S. A. Robinson, J. Rohozinski, G. G. R. Seaton, D. A. Sims, “Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis,” Plant Physiol. 100, 203–213 (1997).
[CrossRef]

Stuhlfauth, T.

T. Stuhlfauth, D. F. Sültemeyer, S. Weinz, H. P. Fock, “Fluorescence quenching and gas exchange in a water stressed C3 plant, Digitalis lanata,” Plant Physiol. 86, 246–250 (1988).
[CrossRef] [PubMed]

Sültemeyer, D. F.

T. Stuhlfauth, D. F. Sültemeyer, S. Weinz, H. P. Fock, “Fluorescence quenching and gas exchange in a water stressed C3 plant, Digitalis lanata,” Plant Physiol. 86, 246–250 (1988).
[CrossRef] [PubMed]

Valle, R. R.

I. C. F. Santos, A. A. F. De Almeida, R. R. Valle, “Chlorophyll fluorescence parameters characterizing the development of two cacao genotypes infected by witches’ broom,” Photosynthetica 35, 29–39 (1998).
[CrossRef]

Vélez, G. C.

G. C. Vélez, Alvarez de la C. y B. Rodríguez-Garay, “Aislamiento de Erwinia del grupo carotovora como patógeno del Agave tequilana,” presented at the XXIII Congreso Nacional de Fitopatología, Guadalajara, Mexico, 25–28 Sept. 1996.

Weinz, S.

T. Stuhlfauth, D. F. Sültemeyer, S. Weinz, H. P. Fock, “Fluorescence quenching and gas exchange in a water stressed C3 plant, Digitalis lanata,” Plant Physiol. 86, 246–250 (1988).
[CrossRef] [PubMed]

Wood, F. M.

Appl. Opt. (3)

CRC Crit. Rev. Anal. Chem. Suppl. I (1)

H. K. Lichtenthaler, U. Rinderle, “The role of chlorophyll fluorescence in detection of stress in plants,” CRC Crit. Rev. Anal. Chem. Suppl. I 19, 529–585 (1988).

Crit. Rev. Biotechnol. (1)

G. M. Cedeño, “Tequila production,” Crit. Rev. Biotechnol. 15, 1–11 (1995).
[CrossRef] [PubMed]

Environ. (1)

E. W. Chappelle, H. K. Lichtenthaler, eds., special issue on fluorescence measurements of vegetation, Remote Sens. Environ. 47, 1–105 (1994).

Photosynthetica (1)

I. C. F. Santos, A. A. F. De Almeida, R. R. Valle, “Chlorophyll fluorescence parameters characterizing the development of two cacao genotypes infected by witches’ broom,” Photosynthetica 35, 29–39 (1998).
[CrossRef]

Phyton. (1)

J. Cervantes-Martínez, R. Flores-Hernández, B. Rodríguez-Garay, “Effect of high and low temperatures on the in vivo laser-induced fluorescence parameters of Agave tequilana Weber var. azul,” Phyton. 2001, 237–243 (2001).

Plant Physiol. (2)

S. Balachandran, V. M. Hurry, S. E. Kelley, C. B. Osmond, S. A. Robinson, J. Rohozinski, G. G. R. Seaton, D. A. Sims, “Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis,” Plant Physiol. 100, 203–213 (1997).
[CrossRef]

T. Stuhlfauth, D. F. Sültemeyer, S. Weinz, H. P. Fock, “Fluorescence quenching and gas exchange in a water stressed C3 plant, Digitalis lanata,” Plant Physiol. 86, 246–250 (1988).
[CrossRef] [PubMed]

Remote Sens. Environ. (1)

K. P. Günther, H. G. Dahn, W. Lüdeker, “Remote sensing vegetation status by laser-induced fluorescence,” Remote Sens. Environ. 47, 10–17 (1994).
[CrossRef]

Other (4)

H. K. Lichtenthaler, “In vivo chlorophyll fluorescence as a tool for stress detection in plants,” in Applications of Chlorophyll Fluorescence, H. J. Lichtenthaler, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1988), pp. 129–142.

B. Rodríguez-Garay, A. Gutiérrez-Mora, F. Santacruz-Ruvalcaba, Métodos de Propagación Biotecnológicos y Convencionales en Agaváceas para Zonas Áridas (Izquierdo J y G Palomino). Técnicas convencionales y biotecnológicas para la propagación de plantas de zonas áridas (Oficina Regional de la Food and Agriculture Organization para América Latina y el Caribe, Santiago, Chile, 1996), pp. 57–81.

G. C. Vélez, Alvarez de la C. y B. Rodríguez-Garay, “Aislamiento de Erwinia del grupo carotovora como patógeno del Agave tequilana,” presented at the XXIII Congreso Nacional de Fitopatología, Guadalajara, Mexico, 25–28 Sept. 1996.

G. N. Agrios, Plant Pathology (Academic, New York, 1997), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

LIF layout: (a) experimental setup; (b) configuration of leaf, laser beam, and optical fiber.

Fig. 2
Fig. 2

Erwinia carotovora fluorescence spectra one day after infection.

Fig. 3
Fig. 3

Erwinia carotovora fluorescence spectra, at 5-day intervals, up to 30 days after infection.

Fig. 4
Fig. 4

Effect of Erwinia carotovora on the mean ratio of the intensity fluorescence at 690 nm to that 740 nm during the 30-day period.

Fig. 5
Fig. 5

LIF emission spectra of agave plants 30 days after infection: control uninfected plants, untreated infected plants, infected plants treated with 192 mM of HEH; and infected plants treated with Bactrol.

Fig. 6
Fig. 6

Bactericidal effects on mean fluorescence intensity ratios F69/F740: A, control uninfected plants; B, uninfected plants treated with HEH 144 mM; C, uninfected plants treated with HEH 192 mM; D, uninfected plants treated with Bactrol; E, untreated infected plants; F, infected plants treated with HEH 144 mM; G, infected plants treated with HEH 192 mM; H, infected plants treated with Bactrol. Means followed by a and b are significantly different at a 95% confidence level, with the least-difference test.

Metrics