Abstract

A new optical fiber sensor based on surface plasmon resonance is described. It uses an optical fiber with an inverted graded-index profile. A theoretical analysis of the optical propagation when a point light source was used and a computation of the optical power transmitted by the fiber were performed. Experiments were carried out to measure changes of the transmitted power caused by refractive-index variations of the surrounding dielectric medium. Both the simulation and experiments have shown that the sensor exhibits high sensitivity for changes of the surrounding medium in a refractive-index range from 1.33 to 1.39.

© 2002 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of skew rays on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon-resonance sensor: a theoretical study

Yogendra S. Dwivedi, Anuj K. Sharma, and Banshi D. Gupta
Appl. Opt. 46(21) 4563-4569 (2007)

Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film

Rajneesh K. Verma and Banshi D. Gupta
J. Opt. Soc. Am. A 27(4) 846-851 (2010)

Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity

Christophe Caucheteur, Valérie Voisin, and Jacques Albert
Opt. Express 23(3) 2918-2932 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription