Abstract

A new optical fiber sensor based on surface plasmon resonance is described. It uses an optical fiber with an inverted graded-index profile. A theoretical analysis of the optical propagation when a point light source was used and a computation of the optical power transmitted by the fiber were performed. Experiments were carried out to measure changes of the transmitted power caused by refractive-index variations of the surrounding dielectric medium. Both the simulation and experiments have shown that the sensor exhibits high sensitivity for changes of the surrounding medium in a refractive-index range from 1.33 to 1.39.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [CrossRef]
  2. Information is available at http://www.biacore.com .
  3. Surface Plasmon Resonance (SPR) Optical Sensors, Current Technology and Applications, Sens. Actuators B54, Special Issue (1999).
  4. R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
    [CrossRef]
  5. A. Trouillet, C. Ronot-Trioli, C. Veillas, H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
    [CrossRef]
  6. C. Ronot-Trioli, A. Trouillet, C. Veillas, H. Gagnaire, “Monochromatic excitation of surface plasmon resonance in an optical fibre refractive-index sensor,” Sens. Actuators A 54, 589–593 (1996).
    [CrossRef]
  7. R. Slavik, J. Homola, J. Ctyroky, “Novel surface plasmon resonance sensor based on single-mode optical fiber,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 325–331 (1997).
    [CrossRef]
  8. A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Single-mode optical fiber surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
    [CrossRef]
  9. V. Matějec, M. Chomát, I. Kašík, J. Ctyroky, D. Berkova, M. Hayer, “Inverted-graded index fiber structures for evanescent-wave chemical sensing,” Sens. Actuators B 51, 340–347 (1998).
    [CrossRef]
  10. M. Chomát, D. Berkova, V. Matějec, J. Ctyroky, I. Kašík, H. Gagnaire, A. Trouillet, F. Bardin, “The detection of refractive-index changes by using a sensing fiber with an inverted parabolic index profile,” in Fiber Optic Sensor Technology and Applications, M. A. Marcus, B. Culshaw, eds., Proc. SPIE3860, 179–189 (1999).
    [CrossRef]
  11. R. L. Lachance, P. A. Bélanger, “Modes in divergent parabolic graded index optical fibers,” J. Lightwave Technol. 9, 1425–1430 (1991).
    [CrossRef]
  12. C. Veillas, “Etude d’un capteur à fibre optique métallisée pour la détection d’espèces chimiques,” Diplôme d’Université de Recherche (Université Jean Monnet, Saint Etienne, France, 1997).
  13. Sh. A. Furman, A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Editions Frontières, Paris, 1992).

1998 (1)

V. Matějec, M. Chomát, I. Kašík, J. Ctyroky, D. Berkova, M. Hayer, “Inverted-graded index fiber structures for evanescent-wave chemical sensing,” Sens. Actuators B 51, 340–347 (1998).
[CrossRef]

1997 (1)

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Single-mode optical fiber surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

1996 (2)

A. Trouillet, C. Ronot-Trioli, C. Veillas, H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[CrossRef]

C. Ronot-Trioli, A. Trouillet, C. Veillas, H. Gagnaire, “Monochromatic excitation of surface plasmon resonance in an optical fibre refractive-index sensor,” Sens. Actuators A 54, 589–593 (1996).
[CrossRef]

1993 (1)

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

1991 (1)

R. L. Lachance, P. A. Bélanger, “Modes in divergent parabolic graded index optical fibers,” J. Lightwave Technol. 9, 1425–1430 (1991).
[CrossRef]

1983 (1)

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Bardin, F.

M. Chomát, D. Berkova, V. Matějec, J. Ctyroky, I. Kašík, H. Gagnaire, A. Trouillet, F. Bardin, “The detection of refractive-index changes by using a sensing fiber with an inverted parabolic index profile,” in Fiber Optic Sensor Technology and Applications, M. A. Marcus, B. Culshaw, eds., Proc. SPIE3860, 179–189 (1999).
[CrossRef]

Bélanger, P. A.

R. L. Lachance, P. A. Bélanger, “Modes in divergent parabolic graded index optical fibers,” J. Lightwave Technol. 9, 1425–1430 (1991).
[CrossRef]

Berkova, D.

V. Matějec, M. Chomát, I. Kašík, J. Ctyroky, D. Berkova, M. Hayer, “Inverted-graded index fiber structures for evanescent-wave chemical sensing,” Sens. Actuators B 51, 340–347 (1998).
[CrossRef]

M. Chomát, D. Berkova, V. Matějec, J. Ctyroky, I. Kašík, H. Gagnaire, A. Trouillet, F. Bardin, “The detection of refractive-index changes by using a sensing fiber with an inverted parabolic index profile,” in Fiber Optic Sensor Technology and Applications, M. A. Marcus, B. Culshaw, eds., Proc. SPIE3860, 179–189 (1999).
[CrossRef]

Chomát, M.

V. Matějec, M. Chomát, I. Kašík, J. Ctyroky, D. Berkova, M. Hayer, “Inverted-graded index fiber structures for evanescent-wave chemical sensing,” Sens. Actuators B 51, 340–347 (1998).
[CrossRef]

M. Chomát, D. Berkova, V. Matějec, J. Ctyroky, I. Kašík, H. Gagnaire, A. Trouillet, F. Bardin, “The detection of refractive-index changes by using a sensing fiber with an inverted parabolic index profile,” in Fiber Optic Sensor Technology and Applications, M. A. Marcus, B. Culshaw, eds., Proc. SPIE3860, 179–189 (1999).
[CrossRef]

Ctyroky, J.

V. Matějec, M. Chomát, I. Kašík, J. Ctyroky, D. Berkova, M. Hayer, “Inverted-graded index fiber structures for evanescent-wave chemical sensing,” Sens. Actuators B 51, 340–347 (1998).
[CrossRef]

M. Chomát, D. Berkova, V. Matějec, J. Ctyroky, I. Kašík, H. Gagnaire, A. Trouillet, F. Bardin, “The detection of refractive-index changes by using a sensing fiber with an inverted parabolic index profile,” in Fiber Optic Sensor Technology and Applications, M. A. Marcus, B. Culshaw, eds., Proc. SPIE3860, 179–189 (1999).
[CrossRef]

R. Slavik, J. Homola, J. Ctyroky, “Novel surface plasmon resonance sensor based on single-mode optical fiber,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 325–331 (1997).
[CrossRef]

Furman, Sh. A.

Sh. A. Furman, A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Editions Frontières, Paris, 1992).

Gagnaire, H.

C. Ronot-Trioli, A. Trouillet, C. Veillas, H. Gagnaire, “Monochromatic excitation of surface plasmon resonance in an optical fibre refractive-index sensor,” Sens. Actuators A 54, 589–593 (1996).
[CrossRef]

A. Trouillet, C. Ronot-Trioli, C. Veillas, H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[CrossRef]

M. Chomát, D. Berkova, V. Matějec, J. Ctyroky, I. Kašík, H. Gagnaire, A. Trouillet, F. Bardin, “The detection of refractive-index changes by using a sensing fiber with an inverted parabolic index profile,” in Fiber Optic Sensor Technology and Applications, M. A. Marcus, B. Culshaw, eds., Proc. SPIE3860, 179–189 (1999).
[CrossRef]

Hayer, M.

V. Matějec, M. Chomát, I. Kašík, J. Ctyroky, D. Berkova, M. Hayer, “Inverted-graded index fiber structures for evanescent-wave chemical sensing,” Sens. Actuators B 51, 340–347 (1998).
[CrossRef]

Homola, J.

R. Slavik, J. Homola, J. Ctyroky, “Novel surface plasmon resonance sensor based on single-mode optical fiber,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 325–331 (1997).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Kašík, I.

V. Matějec, M. Chomát, I. Kašík, J. Ctyroky, D. Berkova, M. Hayer, “Inverted-graded index fiber structures for evanescent-wave chemical sensing,” Sens. Actuators B 51, 340–347 (1998).
[CrossRef]

M. Chomát, D. Berkova, V. Matějec, J. Ctyroky, I. Kašík, H. Gagnaire, A. Trouillet, F. Bardin, “The detection of refractive-index changes by using a sensing fiber with an inverted parabolic index profile,” in Fiber Optic Sensor Technology and Applications, M. A. Marcus, B. Culshaw, eds., Proc. SPIE3860, 179–189 (1999).
[CrossRef]

Lachance, R. L.

R. L. Lachance, P. A. Bélanger, “Modes in divergent parabolic graded index optical fibers,” J. Lightwave Technol. 9, 1425–1430 (1991).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Lowe, C. R.

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Single-mode optical fiber surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

Lundstrom, I.

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Matejec, V.

V. Matějec, M. Chomát, I. Kašík, J. Ctyroky, D. Berkova, M. Hayer, “Inverted-graded index fiber structures for evanescent-wave chemical sensing,” Sens. Actuators B 51, 340–347 (1998).
[CrossRef]

M. Chomát, D. Berkova, V. Matějec, J. Ctyroky, I. Kašík, H. Gagnaire, A. Trouillet, F. Bardin, “The detection of refractive-index changes by using a sensing fiber with an inverted parabolic index profile,” in Fiber Optic Sensor Technology and Applications, M. A. Marcus, B. Culshaw, eds., Proc. SPIE3860, 179–189 (1999).
[CrossRef]

Millington, R. B.

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Single-mode optical fiber surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Payne, F. P.

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Single-mode optical fiber surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

Ronot-Trioli, C.

C. Ronot-Trioli, A. Trouillet, C. Veillas, H. Gagnaire, “Monochromatic excitation of surface plasmon resonance in an optical fibre refractive-index sensor,” Sens. Actuators A 54, 589–593 (1996).
[CrossRef]

A. Trouillet, C. Ronot-Trioli, C. Veillas, H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[CrossRef]

Slavik, R.

R. Slavik, J. Homola, J. Ctyroky, “Novel surface plasmon resonance sensor based on single-mode optical fiber,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 325–331 (1997).
[CrossRef]

Tikhonravov, A. V.

Sh. A. Furman, A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Editions Frontières, Paris, 1992).

Trouillet, A.

C. Ronot-Trioli, A. Trouillet, C. Veillas, H. Gagnaire, “Monochromatic excitation of surface plasmon resonance in an optical fibre refractive-index sensor,” Sens. Actuators A 54, 589–593 (1996).
[CrossRef]

A. Trouillet, C. Ronot-Trioli, C. Veillas, H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[CrossRef]

M. Chomát, D. Berkova, V. Matějec, J. Ctyroky, I. Kašík, H. Gagnaire, A. Trouillet, F. Bardin, “The detection of refractive-index changes by using a sensing fiber with an inverted parabolic index profile,” in Fiber Optic Sensor Technology and Applications, M. A. Marcus, B. Culshaw, eds., Proc. SPIE3860, 179–189 (1999).
[CrossRef]

Tubb, A. J. C.

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Single-mode optical fiber surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

Veillas, C.

C. Ronot-Trioli, A. Trouillet, C. Veillas, H. Gagnaire, “Monochromatic excitation of surface plasmon resonance in an optical fibre refractive-index sensor,” Sens. Actuators A 54, 589–593 (1996).
[CrossRef]

A. Trouillet, C. Ronot-Trioli, C. Veillas, H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[CrossRef]

C. Veillas, “Etude d’un capteur à fibre optique métallisée pour la détection d’espèces chimiques,” Diplôme d’Université de Recherche (Université Jean Monnet, Saint Etienne, France, 1997).

Yee, S. S.

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

J. Lightwave Technol. (1)

R. L. Lachance, P. A. Bélanger, “Modes in divergent parabolic graded index optical fibers,” J. Lightwave Technol. 9, 1425–1430 (1991).
[CrossRef]

Pure Appl. Opt. (1)

A. Trouillet, C. Ronot-Trioli, C. Veillas, H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[CrossRef]

Sens. Actuators (1)

B. Liedberg, C. Nylander, I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Sens. Actuators A (1)

C. Ronot-Trioli, A. Trouillet, C. Veillas, H. Gagnaire, “Monochromatic excitation of surface plasmon resonance in an optical fibre refractive-index sensor,” Sens. Actuators A 54, 589–593 (1996).
[CrossRef]

Sens. Actuators B (3)

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Single-mode optical fiber surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

V. Matějec, M. Chomát, I. Kašík, J. Ctyroky, D. Berkova, M. Hayer, “Inverted-graded index fiber structures for evanescent-wave chemical sensing,” Sens. Actuators B 51, 340–347 (1998).
[CrossRef]

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Other (6)

M. Chomát, D. Berkova, V. Matějec, J. Ctyroky, I. Kašík, H. Gagnaire, A. Trouillet, F. Bardin, “The detection of refractive-index changes by using a sensing fiber with an inverted parabolic index profile,” in Fiber Optic Sensor Technology and Applications, M. A. Marcus, B. Culshaw, eds., Proc. SPIE3860, 179–189 (1999).
[CrossRef]

C. Veillas, “Etude d’un capteur à fibre optique métallisée pour la détection d’espèces chimiques,” Diplôme d’Université de Recherche (Université Jean Monnet, Saint Etienne, France, 1997).

Sh. A. Furman, A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Editions Frontières, Paris, 1992).

R. Slavik, J. Homola, J. Ctyroky, “Novel surface plasmon resonance sensor based on single-mode optical fiber,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 325–331 (1997).
[CrossRef]

Information is available at http://www.biacore.com .

Surface Plasmon Resonance (SPR) Optical Sensors, Current Technology and Applications, Sens. Actuators B54, Special Issue (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Ideal refractive-index profiles compared with the actual refractive-index profile of the IGI preform and its polynomial approximation at a wavelength of 670 nm.

Fig. 2
Fig. 2

Illustration of the two kinds of trajectories in the case of the approximated refractive-index profile versus the angle of incidence α on the input fiber face.

Fig. 3
Fig. 3

Dependence of the angle of incidence Ψ on the angle of incidence α for different normalized distances H between the source and the input face of an IGI or a PCS fiber.

Fig. 4
Fig. 4

Dependence of the normalized spatial period p on the angle of incidence α for different normalized distances H.

Fig. 5
Fig. 5

Schematic illustration of the sensing device.

Fig. 6
Fig. 6

Calculated relationship between the relative transmitted optical power and the refractive index of the surrounding medium for an IGI fiber with a core diameter of 400 µm metallized by silver (ε = -18.5 + 1.25i) or gold (∊ = -14 + 1.25i) coatings for different normalized distances H of a 670-nm source. The thickness and length of the metallic coatings are 50 nm and 15 mm, respectively.

Fig. 7
Fig. 7

Experimental setup for the IGI fiber sensor.

Fig. 8
Fig. 8

Experimentally determined relationship between the relative transmitted optical power and the refractive index of the surrounding medium for different distances h of the source.

Fig. 9
Fig. 9

Experimental dependence of the relative transmitted optical power on the refractive index of the surrounding medium for different lateral offsets y.

Fig. 10
Fig. 10

Experimental dependence of the relative transmitted optical power on the refractive index of the surrounding medium for different lengths L of the sensing silver-coated part.

Fig. 11
Fig. 11

Calculated dependence of the relative transmitted optical power on the refractive index of the surrounding medium for different lengths of the sensing part with an empirical power conversion coefficient from TE to TM polarization of 0.3.

Fig. 12
Fig. 12

Comparison of the experimentally determined dependence of the relative transmitted optical power on the refractive index of the surrounding medium for PCS and IGI fibers.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n2R=na2 sin2Ψ+R2H2+R2, 0R1, =n12, R>1.
nR=m1+m2R+m3R2+m4R3+m5R4+m61+m7R2, 0R0.86, =na, 0.86R1, =n1, R>1.
dZdR=neff2n2R-neff2,
P1SS PinRcN1+N3RmN2dS.

Metrics