Abstract

We describe what we believe is a novel speckle-pattern interferometry method of applying a spatial light modulator (SLM) as an adaptive phase mask to obtain real-time fringes of a deformed object without using conventional correlation methods of electronic subtraction or addition. The method is to use a SLM to cancel initial phase in the speckled image before the object is deformed. The fringes from the deformed object can be visualized directly after the initial phase has been canceled. A commercial liquid-crystal television is used as a SLM. The performance of using this SLM in an out-of-plane speckle interferometer is demonstrated.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Jones, C. Wykes, Holographic and Speckle Interferometry, 2nd ed. (Cambridge University, Cambridge, UK, 1989), pp. 165–196.
  2. P. G. Fogle, T. H. Barnes, T. G. Haskell, “Holographic phase shifting interferometry using liquid crystal television,” Optik 100, 75–82 (1995).
  3. C. Davison, “Development of a parallel access optical disk system for high speed pattern recognition,” Ph.D. dissertation (Department of Mechanical Engineering, Loughborough University, Leicestershire, UK, 1997).
  4. D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25, 12–15 (1974).
    [CrossRef]
  5. I. C. Khoo, “Nonlinear optics of liquid crystals,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, New York, 1988), Vol. XXVI, pp. 105–161.
    [CrossRef]
  6. J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
    [CrossRef]
  7. R. Dou, M. K. Giles, “Closed-loop adaptive-optics system with a liquid-crystal television as a phase retarder,” Opt. Lett. 20, 1583–1585 (1995).
    [CrossRef] [PubMed]
  8. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, “Digital wave-front measuring interferometry—some systematic-error sources,” Appl. Opt. 22, 3421–3432 (1983).
    [CrossRef]
  9. N. A. Ochoa, J. M. Huntley, “Convenient method for calibrating nonlinear phase modulators for use in phase-shifting interferometry,” Opt. Eng. 37, 2501–2505 (1998).
    [CrossRef]

1998 (1)

N. A. Ochoa, J. M. Huntley, “Convenient method for calibrating nonlinear phase modulators for use in phase-shifting interferometry,” Opt. Eng. 37, 2501–2505 (1998).
[CrossRef]

1995 (2)

P. G. Fogle, T. H. Barnes, T. G. Haskell, “Holographic phase shifting interferometry using liquid crystal television,” Optik 100, 75–82 (1995).

R. Dou, M. K. Giles, “Closed-loop adaptive-optics system with a liquid-crystal television as a phase retarder,” Opt. Lett. 20, 1583–1585 (1995).
[CrossRef] [PubMed]

1992 (1)

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

1983 (1)

1974 (1)

D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25, 12–15 (1974).
[CrossRef]

Barnes, T. H.

P. G. Fogle, T. H. Barnes, T. G. Haskell, “Holographic phase shifting interferometry using liquid crystal television,” Optik 100, 75–82 (1995).

Berreman, D. W.

D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25, 12–15 (1974).
[CrossRef]

Burow, R.

Davison, C.

C. Davison, “Development of a parallel access optical disk system for high speed pattern recognition,” Ph.D. dissertation (Department of Mechanical Engineering, Loughborough University, Leicestershire, UK, 1997).

Dou, R.

Elssner, K. E.

Fogle, P. G.

P. G. Fogle, T. H. Barnes, T. G. Haskell, “Holographic phase shifting interferometry using liquid crystal television,” Optik 100, 75–82 (1995).

Giles, M. K.

Gregory, D. A.

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

Grzanna, J.

Haskell, T. G.

P. G. Fogle, T. H. Barnes, T. G. Haskell, “Holographic phase shifting interferometry using liquid crystal television,” Optik 100, 75–82 (1995).

Huntley, J. M.

N. A. Ochoa, J. M. Huntley, “Convenient method for calibrating nonlinear phase modulators for use in phase-shifting interferometry,” Opt. Eng. 37, 2501–2505 (1998).
[CrossRef]

Jones, B. K.

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

Jones, R.

R. Jones, C. Wykes, Holographic and Speckle Interferometry, 2nd ed. (Cambridge University, Cambridge, UK, 1989), pp. 165–196.

Khoo, I. C.

I. C. Khoo, “Nonlinear optics of liquid crystals,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, New York, 1988), Vol. XXVI, pp. 105–161.
[CrossRef]

Kirsch, J. C.

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

Merkel, K.

Ochoa, N. A.

N. A. Ochoa, J. M. Huntley, “Convenient method for calibrating nonlinear phase modulators for use in phase-shifting interferometry,” Opt. Eng. 37, 2501–2505 (1998).
[CrossRef]

Schwider, J.

Spolaczyk, R.

Thie, M. W.

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

Wykes, C.

R. Jones, C. Wykes, Holographic and Speckle Interferometry, 2nd ed. (Cambridge University, Cambridge, UK, 1989), pp. 165–196.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25, 12–15 (1974).
[CrossRef]

Opt. Eng. (2)

N. A. Ochoa, J. M. Huntley, “Convenient method for calibrating nonlinear phase modulators for use in phase-shifting interferometry,” Opt. Eng. 37, 2501–2505 (1998).
[CrossRef]

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

Opt. Lett. (1)

Optik (1)

P. G. Fogle, T. H. Barnes, T. G. Haskell, “Holographic phase shifting interferometry using liquid crystal television,” Optik 100, 75–82 (1995).

Other (3)

C. Davison, “Development of a parallel access optical disk system for high speed pattern recognition,” Ph.D. dissertation (Department of Mechanical Engineering, Loughborough University, Leicestershire, UK, 1997).

I. C. Khoo, “Nonlinear optics of liquid crystals,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, New York, 1988), Vol. XXVI, pp. 105–161.
[CrossRef]

R. Jones, C. Wykes, Holographic and Speckle Interferometry, 2nd ed. (Cambridge University, Cambridge, UK, 1989), pp. 165–196.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Probability-density function for speckle phase, (a) without and (b) with phase mask written to the SLM.

Fig. 2
Fig. 2

Experimental setup of a SLM adaptive speckle interferometer.

Fig. 3
Fig. 3

Phase-modulation map of a LCTV (Casio TV-5100D) corresponding to a gray-level map taking the values 0 to 255 over a 16 × 16 grid of superpixels.

Fig. 4
Fig. 4

Phase-modulation against gray level from a LCTV (Casio TV-5100D). (a) Plot from original measured data, (b) plot from least-squares best curve fitting data.

Fig. 5
Fig. 5

Image of 16 × 16 equally spaced squares, used to define the mapping between the SLM and CCD superpixels. (a) Image of the subtraction of background variation, (b) superimposed grid image.

Fig. 6
Fig. 6

Measured probability-density function of speckle phases, (a) before and (b) after the cancellation of the initial speckle-phase distribution with the SLM.

Fig. 7
Fig. 7

Average intensity over all 16 × 16 superpixels versus the displacement of specimen driven by PZT in steps of 2π/9 over 6π region: (a) without and (b) with cancellation of the initial speckle-phase distribution with the SLM.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I1x, y=Ao2x, y+Ar2x, y+2Aox, yArx, ycosψx, y,
I2x, y=Ao2x, y+Ar2x, y+2Aox, yArx, ycosψx, y+ϕx, y.
I2maxx, y=Ao2x, y+1+2Aox, y0|ψ|<βmAo2x, y+1+2Aox, ycosψ-βmβm|ψ|<π.
I2max=Ao2+1+2Ao βmπ+βmπ cosψ-βmdψπ.
V=I2max-I2minI2max+I2min.
V=2AoAo2+1 Mβm,
Mβm=βm+sinπ-βmπ.
xc=xIx, yIx, y, yc=yIx, yIx, y,

Metrics