Abstract

Polarization-dependent angular-optical properties of spectrally selective reflector surfaces of fluorine-doped tin oxide (SnOx:F) deposited pyrolytically on anodized aluminum are reported. The angular-reflectance measurements, for which both s- and p-polarized light are used in the solar wavelength range 0.3–2.5 µm, reveal strong spectral selectivity, and the angular behavior is highly dependent on the polarizing component of the incident beam, the total film thickness, and the individual thickness of the Al2O3 and the SnOx:F layers. The anodic Al2O3 layers were produced electrochemically and varied between 100 and 205 nm in thickness. The SnOx:F films were grown pyrolytically at a temperature of 400 °C with film thicknesses varying in the range 180–320 nm. The reflectors were aimed at silicon solar cells, and good spectrally selective reflector characteristics were achieved with these thinly preanodized, SnOx:F/Al samples; that is, high cell reflectance was obtained for wavelengths below 1.1 µm and low thermal reflectance for wavelengths above 1.1 µm, with the best samples having values of 0.80 and 0.42, respectively, at near-normal angles of incidence. This corresponds to an anodic layer thickness of 155 nm. Both the angular calculations and the experimental measurements show that the cell reflectance is relatively insensitive to the incidence angle, and a low thermal reflectance is maintained up to an angle of ∼60°.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mwamburi, E. Wäckelgård, A. Roos, “Preparation and characterisation of solar selective SnOx:F coated aluminium reflector surfaces,” Thin Solid Films 374, 1–9 (2000).
    [CrossRef]
  2. I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, 123–159 (1986).
    [CrossRef]
  3. B. Stjerna, E. Olsson, C. G. Granqvist, “Optical and electrical properties of rf sputtered tin oxide films doped with oxygen vacancies, F, Sb or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
    [CrossRef]
  4. M. Mwamburi, B. Karlsson, R. T. Kivaisi, “Transparent conductor coated aluminium reflectors for PV applications,” in Proceedings of The Seventh International Conference on Solar Energy at High Latitudes, Vol. 2 of the Proceedings of the North Sun Series, P. Konttinen, P. D. Lund, eds. (Tummavuoven Kirjapaino Oy, Helsinki, 1997), pp. 659–666.
  5. E. Shanti, A. Banerjee, V. Dutta, K. L. Chopra, “Electrical and optical properties of tin oxide films doped with F and (Sb + F),” J. Appl. Phys. 53, 1615–1621 (1982).
    [CrossRef]
  6. M. Mwamburi, E. Wäckelgård, B. Karlsson, “Optical properties of SnOx:F/Al2O3/Al solar selective reflector surfaces,” presented at the Third International ISES Europe Solar Congress, Copenhagen, Denmark, 19–22 June 2000.
  7. M. Mwamburi, E. Wäckelgård, “Doped tin oxide coated aluminium solar selective reflector surfaces,” Sol. Energy 68-4, 371–378 (2000).
    [CrossRef]
  8. G. Patermarakis, “Development of a theory for the determination of the composition of the anodizing solution inside the pores during the growth of anodic Al2O3 films on aluminium by a transport phenomenon analysis,” J. Electroanal. Chem. 447, 25–41 (1998).
    [CrossRef]
  9. J. P. O’Sullivan, G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminium,” Proc. R. Soc. Lond. A 317, 511–543 (1970).
    [CrossRef]
  10. E. Palibroda, A. Lupsan, S. Pruneanu, M. Savos, “Aluminium porous oxide growth: on the electric conductivity of the barrier layer,” Thin Solid Films 256, 101–105 (1995).
    [CrossRef]
  11. T. S. Eriksson, A. Hjortsberg, G. A. Niklasson, C. G. Granqvist, “Infrared optical properties of evaporated alumina films,” Appl. Opt. 20, 2742–2746 (1981).
    [CrossRef] [PubMed]
  12. A. Roos, “Optical properties of pyrolytic tin oxide on aluminium,” Thin Solid Films 203, 41–48 (1991).
    [CrossRef]
  13. H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, Hilger, London, 1969), Vol. II.
  14. A. Roos, “Optical characterization of coated glazings at oblique angles of incidence: measurements versus model calculations,” J. Non-Cryst. Solids 218, 245–255 (1997).
    [CrossRef]
  15. G. Patermarakis, “Transformation of the overall strict kinetic model governing the growth of anodic Al2O3 films on aluminium to a form applicable to the non-stirred bath film growth,” Electrochim. Acta 40, 2601–2611 (1996).
    [CrossRef]
  16. O. P. Agnihotri, B. K. Gupta, Solar Selective Surfaces (Wiley-Interscience, New York, 1981).
  17. M. Berkvist, A. Roos, C-G. Ribbing, “Interference structure in optical scattering from oxide/metal interfaces,” J. Vac. Sci. Technol. A 5, 1661–1665 (1987).
    [CrossRef]
  18. I. Lindseth, A. Bardal, R. Spooren, “Reflectance measurements of aluminium surfaces using integrating spheres,” Opt. Lasers Eng. 32, 419–435 (1999).
    [CrossRef]

2000 (2)

M. Mwamburi, E. Wäckelgård, A. Roos, “Preparation and characterisation of solar selective SnOx:F coated aluminium reflector surfaces,” Thin Solid Films 374, 1–9 (2000).
[CrossRef]

M. Mwamburi, E. Wäckelgård, “Doped tin oxide coated aluminium solar selective reflector surfaces,” Sol. Energy 68-4, 371–378 (2000).
[CrossRef]

1999 (1)

I. Lindseth, A. Bardal, R. Spooren, “Reflectance measurements of aluminium surfaces using integrating spheres,” Opt. Lasers Eng. 32, 419–435 (1999).
[CrossRef]

1998 (1)

G. Patermarakis, “Development of a theory for the determination of the composition of the anodizing solution inside the pores during the growth of anodic Al2O3 films on aluminium by a transport phenomenon analysis,” J. Electroanal. Chem. 447, 25–41 (1998).
[CrossRef]

1997 (1)

A. Roos, “Optical characterization of coated glazings at oblique angles of incidence: measurements versus model calculations,” J. Non-Cryst. Solids 218, 245–255 (1997).
[CrossRef]

1996 (1)

G. Patermarakis, “Transformation of the overall strict kinetic model governing the growth of anodic Al2O3 films on aluminium to a form applicable to the non-stirred bath film growth,” Electrochim. Acta 40, 2601–2611 (1996).
[CrossRef]

1995 (1)

E. Palibroda, A. Lupsan, S. Pruneanu, M. Savos, “Aluminium porous oxide growth: on the electric conductivity of the barrier layer,” Thin Solid Films 256, 101–105 (1995).
[CrossRef]

1994 (1)

B. Stjerna, E. Olsson, C. G. Granqvist, “Optical and electrical properties of rf sputtered tin oxide films doped with oxygen vacancies, F, Sb or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
[CrossRef]

1991 (1)

A. Roos, “Optical properties of pyrolytic tin oxide on aluminium,” Thin Solid Films 203, 41–48 (1991).
[CrossRef]

1987 (1)

M. Berkvist, A. Roos, C-G. Ribbing, “Interference structure in optical scattering from oxide/metal interfaces,” J. Vac. Sci. Technol. A 5, 1661–1665 (1987).
[CrossRef]

1986 (1)

I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, 123–159 (1986).
[CrossRef]

1982 (1)

E. Shanti, A. Banerjee, V. Dutta, K. L. Chopra, “Electrical and optical properties of tin oxide films doped with F and (Sb + F),” J. Appl. Phys. 53, 1615–1621 (1982).
[CrossRef]

1981 (1)

1970 (1)

J. P. O’Sullivan, G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminium,” Proc. R. Soc. Lond. A 317, 511–543 (1970).
[CrossRef]

Agnihotri, O. P.

O. P. Agnihotri, B. K. Gupta, Solar Selective Surfaces (Wiley-Interscience, New York, 1981).

Banerjee, A.

E. Shanti, A. Banerjee, V. Dutta, K. L. Chopra, “Electrical and optical properties of tin oxide films doped with F and (Sb + F),” J. Appl. Phys. 53, 1615–1621 (1982).
[CrossRef]

Bardal, A.

I. Lindseth, A. Bardal, R. Spooren, “Reflectance measurements of aluminium surfaces using integrating spheres,” Opt. Lasers Eng. 32, 419–435 (1999).
[CrossRef]

Berkvist, M.

M. Berkvist, A. Roos, C-G. Ribbing, “Interference structure in optical scattering from oxide/metal interfaces,” J. Vac. Sci. Technol. A 5, 1661–1665 (1987).
[CrossRef]

Chopra, K. L.

E. Shanti, A. Banerjee, V. Dutta, K. L. Chopra, “Electrical and optical properties of tin oxide films doped with F and (Sb + F),” J. Appl. Phys. 53, 1615–1621 (1982).
[CrossRef]

Dutta, V.

E. Shanti, A. Banerjee, V. Dutta, K. L. Chopra, “Electrical and optical properties of tin oxide films doped with F and (Sb + F),” J. Appl. Phys. 53, 1615–1621 (1982).
[CrossRef]

Eriksson, T. S.

Granqvist, C. G.

B. Stjerna, E. Olsson, C. G. Granqvist, “Optical and electrical properties of rf sputtered tin oxide films doped with oxygen vacancies, F, Sb or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
[CrossRef]

I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, 123–159 (1986).
[CrossRef]

T. S. Eriksson, A. Hjortsberg, G. A. Niklasson, C. G. Granqvist, “Infrared optical properties of evaporated alumina films,” Appl. Opt. 20, 2742–2746 (1981).
[CrossRef] [PubMed]

Gupta, B. K.

O. P. Agnihotri, B. K. Gupta, Solar Selective Surfaces (Wiley-Interscience, New York, 1981).

Hamberg, I.

I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, 123–159 (1986).
[CrossRef]

Hjortsberg, A.

Karlsson, B.

M. Mwamburi, B. Karlsson, R. T. Kivaisi, “Transparent conductor coated aluminium reflectors for PV applications,” in Proceedings of The Seventh International Conference on Solar Energy at High Latitudes, Vol. 2 of the Proceedings of the North Sun Series, P. Konttinen, P. D. Lund, eds. (Tummavuoven Kirjapaino Oy, Helsinki, 1997), pp. 659–666.

M. Mwamburi, E. Wäckelgård, B. Karlsson, “Optical properties of SnOx:F/Al2O3/Al solar selective reflector surfaces,” presented at the Third International ISES Europe Solar Congress, Copenhagen, Denmark, 19–22 June 2000.

Kivaisi, R. T.

M. Mwamburi, B. Karlsson, R. T. Kivaisi, “Transparent conductor coated aluminium reflectors for PV applications,” in Proceedings of The Seventh International Conference on Solar Energy at High Latitudes, Vol. 2 of the Proceedings of the North Sun Series, P. Konttinen, P. D. Lund, eds. (Tummavuoven Kirjapaino Oy, Helsinki, 1997), pp. 659–666.

Lindseth, I.

I. Lindseth, A. Bardal, R. Spooren, “Reflectance measurements of aluminium surfaces using integrating spheres,” Opt. Lasers Eng. 32, 419–435 (1999).
[CrossRef]

Lupsan, A.

E. Palibroda, A. Lupsan, S. Pruneanu, M. Savos, “Aluminium porous oxide growth: on the electric conductivity of the barrier layer,” Thin Solid Films 256, 101–105 (1995).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, Hilger, London, 1969), Vol. II.

Mwamburi, M.

M. Mwamburi, E. Wäckelgård, “Doped tin oxide coated aluminium solar selective reflector surfaces,” Sol. Energy 68-4, 371–378 (2000).
[CrossRef]

M. Mwamburi, E. Wäckelgård, A. Roos, “Preparation and characterisation of solar selective SnOx:F coated aluminium reflector surfaces,” Thin Solid Films 374, 1–9 (2000).
[CrossRef]

M. Mwamburi, B. Karlsson, R. T. Kivaisi, “Transparent conductor coated aluminium reflectors for PV applications,” in Proceedings of The Seventh International Conference on Solar Energy at High Latitudes, Vol. 2 of the Proceedings of the North Sun Series, P. Konttinen, P. D. Lund, eds. (Tummavuoven Kirjapaino Oy, Helsinki, 1997), pp. 659–666.

M. Mwamburi, E. Wäckelgård, B. Karlsson, “Optical properties of SnOx:F/Al2O3/Al solar selective reflector surfaces,” presented at the Third International ISES Europe Solar Congress, Copenhagen, Denmark, 19–22 June 2000.

Niklasson, G. A.

O’Sullivan, J. P.

J. P. O’Sullivan, G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminium,” Proc. R. Soc. Lond. A 317, 511–543 (1970).
[CrossRef]

Olsson, E.

B. Stjerna, E. Olsson, C. G. Granqvist, “Optical and electrical properties of rf sputtered tin oxide films doped with oxygen vacancies, F, Sb or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
[CrossRef]

Palibroda, E.

E. Palibroda, A. Lupsan, S. Pruneanu, M. Savos, “Aluminium porous oxide growth: on the electric conductivity of the barrier layer,” Thin Solid Films 256, 101–105 (1995).
[CrossRef]

Patermarakis, G.

G. Patermarakis, “Development of a theory for the determination of the composition of the anodizing solution inside the pores during the growth of anodic Al2O3 films on aluminium by a transport phenomenon analysis,” J. Electroanal. Chem. 447, 25–41 (1998).
[CrossRef]

G. Patermarakis, “Transformation of the overall strict kinetic model governing the growth of anodic Al2O3 films on aluminium to a form applicable to the non-stirred bath film growth,” Electrochim. Acta 40, 2601–2611 (1996).
[CrossRef]

Pruneanu, S.

E. Palibroda, A. Lupsan, S. Pruneanu, M. Savos, “Aluminium porous oxide growth: on the electric conductivity of the barrier layer,” Thin Solid Films 256, 101–105 (1995).
[CrossRef]

Ribbing, C-G.

M. Berkvist, A. Roos, C-G. Ribbing, “Interference structure in optical scattering from oxide/metal interfaces,” J. Vac. Sci. Technol. A 5, 1661–1665 (1987).
[CrossRef]

Roos, A.

M. Mwamburi, E. Wäckelgård, A. Roos, “Preparation and characterisation of solar selective SnOx:F coated aluminium reflector surfaces,” Thin Solid Films 374, 1–9 (2000).
[CrossRef]

A. Roos, “Optical characterization of coated glazings at oblique angles of incidence: measurements versus model calculations,” J. Non-Cryst. Solids 218, 245–255 (1997).
[CrossRef]

A. Roos, “Optical properties of pyrolytic tin oxide on aluminium,” Thin Solid Films 203, 41–48 (1991).
[CrossRef]

M. Berkvist, A. Roos, C-G. Ribbing, “Interference structure in optical scattering from oxide/metal interfaces,” J. Vac. Sci. Technol. A 5, 1661–1665 (1987).
[CrossRef]

Savos, M.

E. Palibroda, A. Lupsan, S. Pruneanu, M. Savos, “Aluminium porous oxide growth: on the electric conductivity of the barrier layer,” Thin Solid Films 256, 101–105 (1995).
[CrossRef]

Shanti, E.

E. Shanti, A. Banerjee, V. Dutta, K. L. Chopra, “Electrical and optical properties of tin oxide films doped with F and (Sb + F),” J. Appl. Phys. 53, 1615–1621 (1982).
[CrossRef]

Spooren, R.

I. Lindseth, A. Bardal, R. Spooren, “Reflectance measurements of aluminium surfaces using integrating spheres,” Opt. Lasers Eng. 32, 419–435 (1999).
[CrossRef]

Stjerna, B.

B. Stjerna, E. Olsson, C. G. Granqvist, “Optical and electrical properties of rf sputtered tin oxide films doped with oxygen vacancies, F, Sb or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
[CrossRef]

Wäckelgård, E.

M. Mwamburi, E. Wäckelgård, A. Roos, “Preparation and characterisation of solar selective SnOx:F coated aluminium reflector surfaces,” Thin Solid Films 374, 1–9 (2000).
[CrossRef]

M. Mwamburi, E. Wäckelgård, “Doped tin oxide coated aluminium solar selective reflector surfaces,” Sol. Energy 68-4, 371–378 (2000).
[CrossRef]

M. Mwamburi, E. Wäckelgård, B. Karlsson, “Optical properties of SnOx:F/Al2O3/Al solar selective reflector surfaces,” presented at the Third International ISES Europe Solar Congress, Copenhagen, Denmark, 19–22 June 2000.

Wood, G. C.

J. P. O’Sullivan, G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminium,” Proc. R. Soc. Lond. A 317, 511–543 (1970).
[CrossRef]

Appl. Opt. (1)

Electrochim. Acta (1)

G. Patermarakis, “Transformation of the overall strict kinetic model governing the growth of anodic Al2O3 films on aluminium to a form applicable to the non-stirred bath film growth,” Electrochim. Acta 40, 2601–2611 (1996).
[CrossRef]

J. Appl. Phys. (3)

I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys. 60, 123–159 (1986).
[CrossRef]

B. Stjerna, E. Olsson, C. G. Granqvist, “Optical and electrical properties of rf sputtered tin oxide films doped with oxygen vacancies, F, Sb or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
[CrossRef]

E. Shanti, A. Banerjee, V. Dutta, K. L. Chopra, “Electrical and optical properties of tin oxide films doped with F and (Sb + F),” J. Appl. Phys. 53, 1615–1621 (1982).
[CrossRef]

J. Electroanal. Chem. (1)

G. Patermarakis, “Development of a theory for the determination of the composition of the anodizing solution inside the pores during the growth of anodic Al2O3 films on aluminium by a transport phenomenon analysis,” J. Electroanal. Chem. 447, 25–41 (1998).
[CrossRef]

J. Non-Cryst. Solids (1)

A. Roos, “Optical characterization of coated glazings at oblique angles of incidence: measurements versus model calculations,” J. Non-Cryst. Solids 218, 245–255 (1997).
[CrossRef]

J. Vac. Sci. Technol. A (1)

M. Berkvist, A. Roos, C-G. Ribbing, “Interference structure in optical scattering from oxide/metal interfaces,” J. Vac. Sci. Technol. A 5, 1661–1665 (1987).
[CrossRef]

Opt. Lasers Eng. (1)

I. Lindseth, A. Bardal, R. Spooren, “Reflectance measurements of aluminium surfaces using integrating spheres,” Opt. Lasers Eng. 32, 419–435 (1999).
[CrossRef]

Proc. R. Soc. Lond. A (1)

J. P. O’Sullivan, G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminium,” Proc. R. Soc. Lond. A 317, 511–543 (1970).
[CrossRef]

Sol. Energy (1)

M. Mwamburi, E. Wäckelgård, “Doped tin oxide coated aluminium solar selective reflector surfaces,” Sol. Energy 68-4, 371–378 (2000).
[CrossRef]

Thin Solid Films (3)

M. Mwamburi, E. Wäckelgård, A. Roos, “Preparation and characterisation of solar selective SnOx:F coated aluminium reflector surfaces,” Thin Solid Films 374, 1–9 (2000).
[CrossRef]

E. Palibroda, A. Lupsan, S. Pruneanu, M. Savos, “Aluminium porous oxide growth: on the electric conductivity of the barrier layer,” Thin Solid Films 256, 101–105 (1995).
[CrossRef]

A. Roos, “Optical properties of pyrolytic tin oxide on aluminium,” Thin Solid Films 203, 41–48 (1991).
[CrossRef]

Other (4)

H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, Hilger, London, 1969), Vol. II.

O. P. Agnihotri, B. K. Gupta, Solar Selective Surfaces (Wiley-Interscience, New York, 1981).

M. Mwamburi, E. Wäckelgård, B. Karlsson, “Optical properties of SnOx:F/Al2O3/Al solar selective reflector surfaces,” presented at the Third International ISES Europe Solar Congress, Copenhagen, Denmark, 19–22 June 2000.

M. Mwamburi, B. Karlsson, R. T. Kivaisi, “Transparent conductor coated aluminium reflectors for PV applications,” in Proceedings of The Seventh International Conference on Solar Energy at High Latitudes, Vol. 2 of the Proceedings of the North Sun Series, P. Konttinen, P. D. Lund, eds. (Tummavuoven Kirjapaino Oy, Helsinki, 1997), pp. 659–666.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectral reflectance for optimized SnO x :F/Al2O3/Al sample C at various angles of incidence. (a) and (b), R s (θ, λ) theory and experiment, respectively. (c) and (d), R p (θ, λ) theory and experiment, respectively. (e) and (f), R(θ, λ). The SnO x :F layer was deposited at T s = 400 °C. The film thicknesses for the anodic Al2O3 and SnO x :F layers were 155 and 180 nm, respectively.

Fig. 2
Fig. 2

Theoretical and experimental s and p reflectance values R s (θ, 550 nm) and R p (θ, 550 nm) at a wavelength of 550 nm for SnO x :F/Al2O3/Al samples A–D versus the angle of incidence.

Fig. 3
Fig. 3

Diffuse reflectance for the SnO x :F/Al2O3/Al samples, with SnO x :F deposited at T s = 400 °C. The film thickness for the anodic Al2O3 is shown.

Fig. 4
Fig. 4

Theoretical and experimental integrated reflectances R cell and R therm for the SnO x :F/Al2O3/Al samples deposited at T s = 400 °C for 10 min against the incidence angle.

Tables (1)

Tables Icon

Table 1 Experimental Integrated SSRs Rcell and Rtherm at Near-Normal Angles of Incidence for the SnOx:F/Al2O3/Al Samplesa

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ωp=Ne2/0m*1/2,
BC=m=1ncos δmi sin δm/ηmiηm sin δmcos ηm1ηn+1,
δm=2πNmdm cos θm/λ,
ηm=Nm cos θmfor s waves,ηm=Nm/cos θmfor p waves.
rθ, λ=η0-Y/η0+Y,
Rθ, λ=η0-Yη0+Yη0-Yη0+Y*=rr*.
Rθ, λ=Rsθ, λ+Rpθ, λ/2.
RTθ, λ=Rθ, λ+RDθ, λ, RTλ=Rλ+RDλ, for θ=0.
Rcellθ=0.3λcdλRTλ, θGλ0.3λcdλGλ,Rthermθ=λc2.5dλRTλ, θGλλc2.5dλGλ,

Metrics