Abstract

A digital x-ray imaging system was designed for small-animal studies. This system is a fiber-optics taper-coupled imaging system with two CCD arrays uniquely jointed. The x-ray source of the system has a small focal spot of 20 µm. This digital imaging system contains specially designed shelves to provide magnification levels, ranging from 1.5× to 5×. The system is characterized in terms of its properties of spatial resolution. An observer-based spatial resolution measurement was conducted with a line-pair target and a sector test pattern. The modulation transfer function of the system, with different magnifications, was studied by use of a 10-µm lead slit. The average resolutions at 50% and 5% modulations at 1× magnification were measured as 3.9 and 8.4 lp/mm, respectively, where lp indicates line pairs. With 5× magnification, the 50% and the 5% modulations provided 13.2- and 29.9-lp/mm, respectively, average spatial resolutions. The measurements showed consistency between the two individual CCD arrays; the difference in resolution between the two CCDs is less than 1%, even at high magnifications.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Wan, A. P. Kiraly, E. L. Ritman, W. E. Higgins, “Extraction of the hepatic vasculature in rats using 3-D micro-CT images,” IEEE Trans. Med. Imaging 9, 964–971 (2000).
  2. D. W. Holdsworth, M. M. Thornton, D. Drost, P. H. Watson, L. J. Fraher, A. B. Hodsman, “Rapid small-animal dual-energy x-ray absorptiometry using digital radiography,” J. Bone Miner. Res. 12, 2451–2457 (2000).
    [CrossRef]
  3. W. Luedemann, T. Brinker, M. U. Schuhmann, A. I. von Brenndorf, M. Samii, “Direct magnification technique for cerebral angiography in the rat,” Invest. Radiol. 7, 421–424 (1998).
    [CrossRef]
  4. H. Schiabel, A. Ventura, A. F. Frere, “A formal study of lateral magnification and its influence on mammographic imaging sharpness,” Med. Phys. 2, 271–276 (1994).
  5. J. Law, “The influence of focal spot size on image resolution and test phantom scores in mammography,” Br. J. Radiol. 66, 441–446 (1993).
    [CrossRef] [PubMed]
  6. M. Kuchler, M. Friedrich, “Focal spot sizes and the geometric unsharpness of mammographic equipment,” Aktuelle Radiol. 2, 205–211 (1992).
  7. H. Liu, G. Wang, F. Xu, L. L. Fajardo, “Adaptive interpolation for digital mammography systems using multiple detectors,” Appl. Opt. 38, 253–257 (1999).
    [CrossRef]
  8. H. Liu, G. Wang, “Design of a dual CCD configuration to improve the signal-to-noise ratio,” Med. Phys. 27, 2435–2437 (2000).
    [CrossRef] [PubMed]
  9. M. J. Yaffe, J. A. Rowlands, “X-ray detectors for digital radiography,” Phys. Med. Biol. 42, 1–39 (1997).
    [CrossRef] [PubMed]
  10. H. Schiabel, A. F. Frere, P. M. A. Marques, “The modulation transfer function: a simplified procedure for computer-aided quality evaluation in mammography,” IEEE Eng. Med. Biol. Mag. 16, 93–101 (1997).
    [CrossRef] [PubMed]
  11. F. E. Gannon, T. Fields, C. R. Griffith, L. B. Hubbard, M. V. Broadbent, L. Stanton, “Breast radiography: phantom, equipment performance, and radiation dosage comparisons for 28 major mammography centers in the Midwest,” Radiology 149, 579–582 (1983).
    [PubMed]
  12. K. T. K. Karila, “Quality control of mammographic equipment: a 5-year follow-up,” Br. J. Radiol. 61, 1155–1167 (1988).
    [CrossRef] [PubMed]
  13. C. B. Caldwell, M. J. Yaffe, “Development of an anthropomorphic breast phantom,” Med. Phys. 17, 273–280 (1980).
    [CrossRef]
  14. J. M. Boone, “Determination of the presampled MTF in computed tomography,” Med. Phys. 283, 56–360 (2001).
  15. C. E. Floyd, R. J. Warp, J. T. Dobbins, H. G. Chotas, A. H. Baydush, R. Vargas-Voracek, C. E. Ravin, “Imaging characteristics of an amorphous silicon flat-panel detector for digital chest radiography,” Radiology 218, 683–688 (2001).
    [CrossRef] [PubMed]
  16. S. Vedantham, A. Karellas, S. Suryanarayanan, I. Levis, M. Sayag, R. Kleehammer, R. Heidsieck, C. J. D’Orsi, “Mammographic imaging with a small format CCD-based digital cassette: physical characteristics of a clinical system,” Med. Phys. 27, 1832–1840 (2000).
    [CrossRef] [PubMed]
  17. R. H. Vandre, J. C. Pajak, H. Abdel-Nabi, T. T. Farman, A. G. Farman, “Comparison of observer performance in determining the position of endodontic files with physical measures in the evaluation of dental x-ray imaging systems,” Dentomaxillofac. Radiol. 29, 216–222 (2000).
    [CrossRef] [PubMed]
  18. K. Araki, A. Endo, T. Okano, “An objective comparison of four digital intra-oral radiographic systems: sensitometric properties and resolution,” Dentomaxillofac. Radiol. 29, 76–80 (2000).
    [CrossRef] [PubMed]
  19. M. Spahn, M. Strotzer, M. Volk, S. Bohm, B. Geiger, G. Hahm, S. Feuerbach, “Digital radiography with a large-area, amorphous-silicon, flat-panel X-ray detector system,” Invest. Radiol. 35, 260–266 (2000).
    [CrossRef] [PubMed]
  20. E. Samei, M. J. Flynn, D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25, 102–113 (1998).
    [CrossRef] [PubMed]
  21. T. Yu, J. M. Sabol, J. A. Seibert, J. M. Boone, “Scintillating fiber optic screens: A comparison of MTF, light conversion efficiency, and emission angle with Gd2O2S:Tb screens,” Med. Phys. 24, 279–285 (1997).
    [CrossRef] [PubMed]
  22. J. M. Boone, T. Yu, J. A. Seibert, “Sinusoidal modulation analysis for optical system MTF measurements,” Med. Phys. 23, 1955–1963 (1996).
    [CrossRef] [PubMed]
  23. W. D. McDavid, U. Welander, G. C. Sanderink, S. B. Dove, G. Tronje, “A simple method for measuring MTF in direct digital intraoral radiography. Technical note,” Oral Surg. Oral Med. Oral Pathol. 78, 802–805 (1994).
    [CrossRef] [PubMed]
  24. R. A. Sones, G. T. Barnes, “A method to measure the MTF of digital x-ray systems,” Med. Phys. 11, 166–171 (1984).
    [CrossRef] [PubMed]
  25. M. L. Giger, K. Doi, “Investigation of basic imaging properties in digital radiography. I. Modulation transfer function,” Med. Phys. 11, 287–295 (1984).
    [CrossRef] [PubMed]
  26. C. E. Metz, K. Doi, “Transfer function analysis of radiographic imaging systems,” Phys. Med. Biol. 24, 1079–1106 (1979).
    [CrossRef] [PubMed]
  27. M. J. Flynn, E. Samei, “Experimental comparison of noise and resolution for 2K and 4K storage phosphor radiography systems,” Med. Phys. 26, 1612–1623 (1999).
    [CrossRef] [PubMed]
  28. J. C. Dainty, R. Shaw, Image Science (Academic, New York, 1974).
  29. V. Kafrandjian, Y. M. Zhu, G. Roziere, G. Peix, D. Babot, “A comparison of the ball, wire, edge, and bar/space pattern techniques for modulation transfer function measurements of linear x-ray detectors,” J. X-Ray Sci. Technol. 6, 205–221 (1996).
    [CrossRef]
  30. E. Samei, M. Flynn, “A method for measuring the presampled MTF of digital radiographic system using an edge test device,” Med. Phys. 25, 102–113 (1998).
    [CrossRef] [PubMed]
  31. H. Fujita, D.-Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, A. Ohstuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11, 34–39 (1992).
    [CrossRef] [PubMed]

2001 (2)

J. M. Boone, “Determination of the presampled MTF in computed tomography,” Med. Phys. 283, 56–360 (2001).

C. E. Floyd, R. J. Warp, J. T. Dobbins, H. G. Chotas, A. H. Baydush, R. Vargas-Voracek, C. E. Ravin, “Imaging characteristics of an amorphous silicon flat-panel detector for digital chest radiography,” Radiology 218, 683–688 (2001).
[CrossRef] [PubMed]

2000 (7)

S. Vedantham, A. Karellas, S. Suryanarayanan, I. Levis, M. Sayag, R. Kleehammer, R. Heidsieck, C. J. D’Orsi, “Mammographic imaging with a small format CCD-based digital cassette: physical characteristics of a clinical system,” Med. Phys. 27, 1832–1840 (2000).
[CrossRef] [PubMed]

R. H. Vandre, J. C. Pajak, H. Abdel-Nabi, T. T. Farman, A. G. Farman, “Comparison of observer performance in determining the position of endodontic files with physical measures in the evaluation of dental x-ray imaging systems,” Dentomaxillofac. Radiol. 29, 216–222 (2000).
[CrossRef] [PubMed]

K. Araki, A. Endo, T. Okano, “An objective comparison of four digital intra-oral radiographic systems: sensitometric properties and resolution,” Dentomaxillofac. Radiol. 29, 76–80 (2000).
[CrossRef] [PubMed]

M. Spahn, M. Strotzer, M. Volk, S. Bohm, B. Geiger, G. Hahm, S. Feuerbach, “Digital radiography with a large-area, amorphous-silicon, flat-panel X-ray detector system,” Invest. Radiol. 35, 260–266 (2000).
[CrossRef] [PubMed]

H. Liu, G. Wang, “Design of a dual CCD configuration to improve the signal-to-noise ratio,” Med. Phys. 27, 2435–2437 (2000).
[CrossRef] [PubMed]

S. Y. Wan, A. P. Kiraly, E. L. Ritman, W. E. Higgins, “Extraction of the hepatic vasculature in rats using 3-D micro-CT images,” IEEE Trans. Med. Imaging 9, 964–971 (2000).

D. W. Holdsworth, M. M. Thornton, D. Drost, P. H. Watson, L. J. Fraher, A. B. Hodsman, “Rapid small-animal dual-energy x-ray absorptiometry using digital radiography,” J. Bone Miner. Res. 12, 2451–2457 (2000).
[CrossRef]

1999 (2)

H. Liu, G. Wang, F. Xu, L. L. Fajardo, “Adaptive interpolation for digital mammography systems using multiple detectors,” Appl. Opt. 38, 253–257 (1999).
[CrossRef]

M. J. Flynn, E. Samei, “Experimental comparison of noise and resolution for 2K and 4K storage phosphor radiography systems,” Med. Phys. 26, 1612–1623 (1999).
[CrossRef] [PubMed]

1998 (3)

E. Samei, M. J. Flynn, D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25, 102–113 (1998).
[CrossRef] [PubMed]

E. Samei, M. Flynn, “A method for measuring the presampled MTF of digital radiographic system using an edge test device,” Med. Phys. 25, 102–113 (1998).
[CrossRef] [PubMed]

W. Luedemann, T. Brinker, M. U. Schuhmann, A. I. von Brenndorf, M. Samii, “Direct magnification technique for cerebral angiography in the rat,” Invest. Radiol. 7, 421–424 (1998).
[CrossRef]

1997 (3)

T. Yu, J. M. Sabol, J. A. Seibert, J. M. Boone, “Scintillating fiber optic screens: A comparison of MTF, light conversion efficiency, and emission angle with Gd2O2S:Tb screens,” Med. Phys. 24, 279–285 (1997).
[CrossRef] [PubMed]

M. J. Yaffe, J. A. Rowlands, “X-ray detectors for digital radiography,” Phys. Med. Biol. 42, 1–39 (1997).
[CrossRef] [PubMed]

H. Schiabel, A. F. Frere, P. M. A. Marques, “The modulation transfer function: a simplified procedure for computer-aided quality evaluation in mammography,” IEEE Eng. Med. Biol. Mag. 16, 93–101 (1997).
[CrossRef] [PubMed]

1996 (2)

V. Kafrandjian, Y. M. Zhu, G. Roziere, G. Peix, D. Babot, “A comparison of the ball, wire, edge, and bar/space pattern techniques for modulation transfer function measurements of linear x-ray detectors,” J. X-Ray Sci. Technol. 6, 205–221 (1996).
[CrossRef]

J. M. Boone, T. Yu, J. A. Seibert, “Sinusoidal modulation analysis for optical system MTF measurements,” Med. Phys. 23, 1955–1963 (1996).
[CrossRef] [PubMed]

1994 (2)

W. D. McDavid, U. Welander, G. C. Sanderink, S. B. Dove, G. Tronje, “A simple method for measuring MTF in direct digital intraoral radiography. Technical note,” Oral Surg. Oral Med. Oral Pathol. 78, 802–805 (1994).
[CrossRef] [PubMed]

H. Schiabel, A. Ventura, A. F. Frere, “A formal study of lateral magnification and its influence on mammographic imaging sharpness,” Med. Phys. 2, 271–276 (1994).

1993 (1)

J. Law, “The influence of focal spot size on image resolution and test phantom scores in mammography,” Br. J. Radiol. 66, 441–446 (1993).
[CrossRef] [PubMed]

1992 (2)

M. Kuchler, M. Friedrich, “Focal spot sizes and the geometric unsharpness of mammographic equipment,” Aktuelle Radiol. 2, 205–211 (1992).

H. Fujita, D.-Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, A. Ohstuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11, 34–39 (1992).
[CrossRef] [PubMed]

1988 (1)

K. T. K. Karila, “Quality control of mammographic equipment: a 5-year follow-up,” Br. J. Radiol. 61, 1155–1167 (1988).
[CrossRef] [PubMed]

1984 (2)

R. A. Sones, G. T. Barnes, “A method to measure the MTF of digital x-ray systems,” Med. Phys. 11, 166–171 (1984).
[CrossRef] [PubMed]

M. L. Giger, K. Doi, “Investigation of basic imaging properties in digital radiography. I. Modulation transfer function,” Med. Phys. 11, 287–295 (1984).
[CrossRef] [PubMed]

1983 (1)

F. E. Gannon, T. Fields, C. R. Griffith, L. B. Hubbard, M. V. Broadbent, L. Stanton, “Breast radiography: phantom, equipment performance, and radiation dosage comparisons for 28 major mammography centers in the Midwest,” Radiology 149, 579–582 (1983).
[PubMed]

1980 (1)

C. B. Caldwell, M. J. Yaffe, “Development of an anthropomorphic breast phantom,” Med. Phys. 17, 273–280 (1980).
[CrossRef]

1979 (1)

C. E. Metz, K. Doi, “Transfer function analysis of radiographic imaging systems,” Phys. Med. Biol. 24, 1079–1106 (1979).
[CrossRef] [PubMed]

Abdel-Nabi, H.

R. H. Vandre, J. C. Pajak, H. Abdel-Nabi, T. T. Farman, A. G. Farman, “Comparison of observer performance in determining the position of endodontic files with physical measures in the evaluation of dental x-ray imaging systems,” Dentomaxillofac. Radiol. 29, 216–222 (2000).
[CrossRef] [PubMed]

Araki, K.

K. Araki, A. Endo, T. Okano, “An objective comparison of four digital intra-oral radiographic systems: sensitometric properties and resolution,” Dentomaxillofac. Radiol. 29, 76–80 (2000).
[CrossRef] [PubMed]

Babot, D.

V. Kafrandjian, Y. M. Zhu, G. Roziere, G. Peix, D. Babot, “A comparison of the ball, wire, edge, and bar/space pattern techniques for modulation transfer function measurements of linear x-ray detectors,” J. X-Ray Sci. Technol. 6, 205–221 (1996).
[CrossRef]

Barnes, G. T.

R. A. Sones, G. T. Barnes, “A method to measure the MTF of digital x-ray systems,” Med. Phys. 11, 166–171 (1984).
[CrossRef] [PubMed]

Baydush, A. H.

C. E. Floyd, R. J. Warp, J. T. Dobbins, H. G. Chotas, A. H. Baydush, R. Vargas-Voracek, C. E. Ravin, “Imaging characteristics of an amorphous silicon flat-panel detector for digital chest radiography,” Radiology 218, 683–688 (2001).
[CrossRef] [PubMed]

Bohm, S.

M. Spahn, M. Strotzer, M. Volk, S. Bohm, B. Geiger, G. Hahm, S. Feuerbach, “Digital radiography with a large-area, amorphous-silicon, flat-panel X-ray detector system,” Invest. Radiol. 35, 260–266 (2000).
[CrossRef] [PubMed]

Boone, J. M.

J. M. Boone, “Determination of the presampled MTF in computed tomography,” Med. Phys. 283, 56–360 (2001).

T. Yu, J. M. Sabol, J. A. Seibert, J. M. Boone, “Scintillating fiber optic screens: A comparison of MTF, light conversion efficiency, and emission angle with Gd2O2S:Tb screens,” Med. Phys. 24, 279–285 (1997).
[CrossRef] [PubMed]

J. M. Boone, T. Yu, J. A. Seibert, “Sinusoidal modulation analysis for optical system MTF measurements,” Med. Phys. 23, 1955–1963 (1996).
[CrossRef] [PubMed]

Brinker, T.

W. Luedemann, T. Brinker, M. U. Schuhmann, A. I. von Brenndorf, M. Samii, “Direct magnification technique for cerebral angiography in the rat,” Invest. Radiol. 7, 421–424 (1998).
[CrossRef]

Broadbent, M. V.

F. E. Gannon, T. Fields, C. R. Griffith, L. B. Hubbard, M. V. Broadbent, L. Stanton, “Breast radiography: phantom, equipment performance, and radiation dosage comparisons for 28 major mammography centers in the Midwest,” Radiology 149, 579–582 (1983).
[PubMed]

Caldwell, C. B.

C. B. Caldwell, M. J. Yaffe, “Development of an anthropomorphic breast phantom,” Med. Phys. 17, 273–280 (1980).
[CrossRef]

Chotas, H. G.

C. E. Floyd, R. J. Warp, J. T. Dobbins, H. G. Chotas, A. H. Baydush, R. Vargas-Voracek, C. E. Ravin, “Imaging characteristics of an amorphous silicon flat-panel detector for digital chest radiography,” Radiology 218, 683–688 (2001).
[CrossRef] [PubMed]

D’Orsi, C. J.

S. Vedantham, A. Karellas, S. Suryanarayanan, I. Levis, M. Sayag, R. Kleehammer, R. Heidsieck, C. J. D’Orsi, “Mammographic imaging with a small format CCD-based digital cassette: physical characteristics of a clinical system,” Med. Phys. 27, 1832–1840 (2000).
[CrossRef] [PubMed]

Dainty, J. C.

J. C. Dainty, R. Shaw, Image Science (Academic, New York, 1974).

Dobbins, J. T.

C. E. Floyd, R. J. Warp, J. T. Dobbins, H. G. Chotas, A. H. Baydush, R. Vargas-Voracek, C. E. Ravin, “Imaging characteristics of an amorphous silicon flat-panel detector for digital chest radiography,” Radiology 218, 683–688 (2001).
[CrossRef] [PubMed]

Doi, K.

H. Fujita, D.-Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, A. Ohstuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11, 34–39 (1992).
[CrossRef] [PubMed]

M. L. Giger, K. Doi, “Investigation of basic imaging properties in digital radiography. I. Modulation transfer function,” Med. Phys. 11, 287–295 (1984).
[CrossRef] [PubMed]

C. E. Metz, K. Doi, “Transfer function analysis of radiographic imaging systems,” Phys. Med. Biol. 24, 1079–1106 (1979).
[CrossRef] [PubMed]

Dove, S. B.

W. D. McDavid, U. Welander, G. C. Sanderink, S. B. Dove, G. Tronje, “A simple method for measuring MTF in direct digital intraoral radiography. Technical note,” Oral Surg. Oral Med. Oral Pathol. 78, 802–805 (1994).
[CrossRef] [PubMed]

Drost, D.

D. W. Holdsworth, M. M. Thornton, D. Drost, P. H. Watson, L. J. Fraher, A. B. Hodsman, “Rapid small-animal dual-energy x-ray absorptiometry using digital radiography,” J. Bone Miner. Res. 12, 2451–2457 (2000).
[CrossRef]

Endo, A.

K. Araki, A. Endo, T. Okano, “An objective comparison of four digital intra-oral radiographic systems: sensitometric properties and resolution,” Dentomaxillofac. Radiol. 29, 76–80 (2000).
[CrossRef] [PubMed]

Fajardo, L. L.

Farman, A. G.

R. H. Vandre, J. C. Pajak, H. Abdel-Nabi, T. T. Farman, A. G. Farman, “Comparison of observer performance in determining the position of endodontic files with physical measures in the evaluation of dental x-ray imaging systems,” Dentomaxillofac. Radiol. 29, 216–222 (2000).
[CrossRef] [PubMed]

Farman, T. T.

R. H. Vandre, J. C. Pajak, H. Abdel-Nabi, T. T. Farman, A. G. Farman, “Comparison of observer performance in determining the position of endodontic files with physical measures in the evaluation of dental x-ray imaging systems,” Dentomaxillofac. Radiol. 29, 216–222 (2000).
[CrossRef] [PubMed]

Feuerbach, S.

M. Spahn, M. Strotzer, M. Volk, S. Bohm, B. Geiger, G. Hahm, S. Feuerbach, “Digital radiography with a large-area, amorphous-silicon, flat-panel X-ray detector system,” Invest. Radiol. 35, 260–266 (2000).
[CrossRef] [PubMed]

Fields, T.

F. E. Gannon, T. Fields, C. R. Griffith, L. B. Hubbard, M. V. Broadbent, L. Stanton, “Breast radiography: phantom, equipment performance, and radiation dosage comparisons for 28 major mammography centers in the Midwest,” Radiology 149, 579–582 (1983).
[PubMed]

Floyd, C. E.

C. E. Floyd, R. J. Warp, J. T. Dobbins, H. G. Chotas, A. H. Baydush, R. Vargas-Voracek, C. E. Ravin, “Imaging characteristics of an amorphous silicon flat-panel detector for digital chest radiography,” Radiology 218, 683–688 (2001).
[CrossRef] [PubMed]

Flynn, M.

E. Samei, M. Flynn, “A method for measuring the presampled MTF of digital radiographic system using an edge test device,” Med. Phys. 25, 102–113 (1998).
[CrossRef] [PubMed]

Flynn, M. J.

M. J. Flynn, E. Samei, “Experimental comparison of noise and resolution for 2K and 4K storage phosphor radiography systems,” Med. Phys. 26, 1612–1623 (1999).
[CrossRef] [PubMed]

E. Samei, M. J. Flynn, D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25, 102–113 (1998).
[CrossRef] [PubMed]

Fraher, L. J.

D. W. Holdsworth, M. M. Thornton, D. Drost, P. H. Watson, L. J. Fraher, A. B. Hodsman, “Rapid small-animal dual-energy x-ray absorptiometry using digital radiography,” J. Bone Miner. Res. 12, 2451–2457 (2000).
[CrossRef]

Frere, A. F.

H. Schiabel, A. F. Frere, P. M. A. Marques, “The modulation transfer function: a simplified procedure for computer-aided quality evaluation in mammography,” IEEE Eng. Med. Biol. Mag. 16, 93–101 (1997).
[CrossRef] [PubMed]

H. Schiabel, A. Ventura, A. F. Frere, “A formal study of lateral magnification and its influence on mammographic imaging sharpness,” Med. Phys. 2, 271–276 (1994).

Friedrich, M.

M. Kuchler, M. Friedrich, “Focal spot sizes and the geometric unsharpness of mammographic equipment,” Aktuelle Radiol. 2, 205–211 (1992).

Fujita, H.

H. Fujita, D.-Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, A. Ohstuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11, 34–39 (1992).
[CrossRef] [PubMed]

Gannon, F. E.

F. E. Gannon, T. Fields, C. R. Griffith, L. B. Hubbard, M. V. Broadbent, L. Stanton, “Breast radiography: phantom, equipment performance, and radiation dosage comparisons for 28 major mammography centers in the Midwest,” Radiology 149, 579–582 (1983).
[PubMed]

Geiger, B.

M. Spahn, M. Strotzer, M. Volk, S. Bohm, B. Geiger, G. Hahm, S. Feuerbach, “Digital radiography with a large-area, amorphous-silicon, flat-panel X-ray detector system,” Invest. Radiol. 35, 260–266 (2000).
[CrossRef] [PubMed]

Giger, M. L.

M. L. Giger, K. Doi, “Investigation of basic imaging properties in digital radiography. I. Modulation transfer function,” Med. Phys. 11, 287–295 (1984).
[CrossRef] [PubMed]

Griffith, C. R.

F. E. Gannon, T. Fields, C. R. Griffith, L. B. Hubbard, M. V. Broadbent, L. Stanton, “Breast radiography: phantom, equipment performance, and radiation dosage comparisons for 28 major mammography centers in the Midwest,” Radiology 149, 579–582 (1983).
[PubMed]

Hahm, G.

M. Spahn, M. Strotzer, M. Volk, S. Bohm, B. Geiger, G. Hahm, S. Feuerbach, “Digital radiography with a large-area, amorphous-silicon, flat-panel X-ray detector system,” Invest. Radiol. 35, 260–266 (2000).
[CrossRef] [PubMed]

Heidsieck, R.

S. Vedantham, A. Karellas, S. Suryanarayanan, I. Levis, M. Sayag, R. Kleehammer, R. Heidsieck, C. J. D’Orsi, “Mammographic imaging with a small format CCD-based digital cassette: physical characteristics of a clinical system,” Med. Phys. 27, 1832–1840 (2000).
[CrossRef] [PubMed]

Higgins, W. E.

S. Y. Wan, A. P. Kiraly, E. L. Ritman, W. E. Higgins, “Extraction of the hepatic vasculature in rats using 3-D micro-CT images,” IEEE Trans. Med. Imaging 9, 964–971 (2000).

Hodsman, A. B.

D. W. Holdsworth, M. M. Thornton, D. Drost, P. H. Watson, L. J. Fraher, A. B. Hodsman, “Rapid small-animal dual-energy x-ray absorptiometry using digital radiography,” J. Bone Miner. Res. 12, 2451–2457 (2000).
[CrossRef]

Holdsworth, D. W.

D. W. Holdsworth, M. M. Thornton, D. Drost, P. H. Watson, L. J. Fraher, A. B. Hodsman, “Rapid small-animal dual-energy x-ray absorptiometry using digital radiography,” J. Bone Miner. Res. 12, 2451–2457 (2000).
[CrossRef]

Hubbard, L. B.

F. E. Gannon, T. Fields, C. R. Griffith, L. B. Hubbard, M. V. Broadbent, L. Stanton, “Breast radiography: phantom, equipment performance, and radiation dosage comparisons for 28 major mammography centers in the Midwest,” Radiology 149, 579–582 (1983).
[PubMed]

Itoh, T.

H. Fujita, D.-Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, A. Ohstuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11, 34–39 (1992).
[CrossRef] [PubMed]

Kafrandjian, V.

V. Kafrandjian, Y. M. Zhu, G. Roziere, G. Peix, D. Babot, “A comparison of the ball, wire, edge, and bar/space pattern techniques for modulation transfer function measurements of linear x-ray detectors,” J. X-Ray Sci. Technol. 6, 205–221 (1996).
[CrossRef]

Karellas, A.

S. Vedantham, A. Karellas, S. Suryanarayanan, I. Levis, M. Sayag, R. Kleehammer, R. Heidsieck, C. J. D’Orsi, “Mammographic imaging with a small format CCD-based digital cassette: physical characteristics of a clinical system,” Med. Phys. 27, 1832–1840 (2000).
[CrossRef] [PubMed]

Karila, K. T. K.

K. T. K. Karila, “Quality control of mammographic equipment: a 5-year follow-up,” Br. J. Radiol. 61, 1155–1167 (1988).
[CrossRef] [PubMed]

Kiraly, A. P.

S. Y. Wan, A. P. Kiraly, E. L. Ritman, W. E. Higgins, “Extraction of the hepatic vasculature in rats using 3-D micro-CT images,” IEEE Trans. Med. Imaging 9, 964–971 (2000).

Kleehammer, R.

S. Vedantham, A. Karellas, S. Suryanarayanan, I. Levis, M. Sayag, R. Kleehammer, R. Heidsieck, C. J. D’Orsi, “Mammographic imaging with a small format CCD-based digital cassette: physical characteristics of a clinical system,” Med. Phys. 27, 1832–1840 (2000).
[CrossRef] [PubMed]

Kuchler, M.

M. Kuchler, M. Friedrich, “Focal spot sizes and the geometric unsharpness of mammographic equipment,” Aktuelle Radiol. 2, 205–211 (1992).

Law, J.

J. Law, “The influence of focal spot size on image resolution and test phantom scores in mammography,” Br. J. Radiol. 66, 441–446 (1993).
[CrossRef] [PubMed]

Levis, I.

S. Vedantham, A. Karellas, S. Suryanarayanan, I. Levis, M. Sayag, R. Kleehammer, R. Heidsieck, C. J. D’Orsi, “Mammographic imaging with a small format CCD-based digital cassette: physical characteristics of a clinical system,” Med. Phys. 27, 1832–1840 (2000).
[CrossRef] [PubMed]

Liu, H.

H. Liu, G. Wang, “Design of a dual CCD configuration to improve the signal-to-noise ratio,” Med. Phys. 27, 2435–2437 (2000).
[CrossRef] [PubMed]

H. Liu, G. Wang, F. Xu, L. L. Fajardo, “Adaptive interpolation for digital mammography systems using multiple detectors,” Appl. Opt. 38, 253–257 (1999).
[CrossRef]

Luedemann, W.

W. Luedemann, T. Brinker, M. U. Schuhmann, A. I. von Brenndorf, M. Samii, “Direct magnification technique for cerebral angiography in the rat,” Invest. Radiol. 7, 421–424 (1998).
[CrossRef]

Marques, P. M. A.

H. Schiabel, A. F. Frere, P. M. A. Marques, “The modulation transfer function: a simplified procedure for computer-aided quality evaluation in mammography,” IEEE Eng. Med. Biol. Mag. 16, 93–101 (1997).
[CrossRef] [PubMed]

McDavid, W. D.

W. D. McDavid, U. Welander, G. C. Sanderink, S. B. Dove, G. Tronje, “A simple method for measuring MTF in direct digital intraoral radiography. Technical note,” Oral Surg. Oral Med. Oral Pathol. 78, 802–805 (1994).
[CrossRef] [PubMed]

Metz, C. E.

C. E. Metz, K. Doi, “Transfer function analysis of radiographic imaging systems,” Phys. Med. Biol. 24, 1079–1106 (1979).
[CrossRef] [PubMed]

Morishita, J.

H. Fujita, D.-Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, A. Ohstuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11, 34–39 (1992).
[CrossRef] [PubMed]

Ohstuka, A.

H. Fujita, D.-Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, A. Ohstuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11, 34–39 (1992).
[CrossRef] [PubMed]

Okano, T.

K. Araki, A. Endo, T. Okano, “An objective comparison of four digital intra-oral radiographic systems: sensitometric properties and resolution,” Dentomaxillofac. Radiol. 29, 76–80 (2000).
[CrossRef] [PubMed]

Pajak, J. C.

R. H. Vandre, J. C. Pajak, H. Abdel-Nabi, T. T. Farman, A. G. Farman, “Comparison of observer performance in determining the position of endodontic files with physical measures in the evaluation of dental x-ray imaging systems,” Dentomaxillofac. Radiol. 29, 216–222 (2000).
[CrossRef] [PubMed]

Peix, G.

V. Kafrandjian, Y. M. Zhu, G. Roziere, G. Peix, D. Babot, “A comparison of the ball, wire, edge, and bar/space pattern techniques for modulation transfer function measurements of linear x-ray detectors,” J. X-Ray Sci. Technol. 6, 205–221 (1996).
[CrossRef]

Ravin, C. E.

C. E. Floyd, R. J. Warp, J. T. Dobbins, H. G. Chotas, A. H. Baydush, R. Vargas-Voracek, C. E. Ravin, “Imaging characteristics of an amorphous silicon flat-panel detector for digital chest radiography,” Radiology 218, 683–688 (2001).
[CrossRef] [PubMed]

Reimann, D. A.

E. Samei, M. J. Flynn, D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25, 102–113 (1998).
[CrossRef] [PubMed]

Ritman, E. L.

S. Y. Wan, A. P. Kiraly, E. L. Ritman, W. E. Higgins, “Extraction of the hepatic vasculature in rats using 3-D micro-CT images,” IEEE Trans. Med. Imaging 9, 964–971 (2000).

Rowlands, J. A.

M. J. Yaffe, J. A. Rowlands, “X-ray detectors for digital radiography,” Phys. Med. Biol. 42, 1–39 (1997).
[CrossRef] [PubMed]

Roziere, G.

V. Kafrandjian, Y. M. Zhu, G. Roziere, G. Peix, D. Babot, “A comparison of the ball, wire, edge, and bar/space pattern techniques for modulation transfer function measurements of linear x-ray detectors,” J. X-Ray Sci. Technol. 6, 205–221 (1996).
[CrossRef]

Sabol, J. M.

T. Yu, J. M. Sabol, J. A. Seibert, J. M. Boone, “Scintillating fiber optic screens: A comparison of MTF, light conversion efficiency, and emission angle with Gd2O2S:Tb screens,” Med. Phys. 24, 279–285 (1997).
[CrossRef] [PubMed]

Samei, E.

M. J. Flynn, E. Samei, “Experimental comparison of noise and resolution for 2K and 4K storage phosphor radiography systems,” Med. Phys. 26, 1612–1623 (1999).
[CrossRef] [PubMed]

E. Samei, M. J. Flynn, D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25, 102–113 (1998).
[CrossRef] [PubMed]

E. Samei, M. Flynn, “A method for measuring the presampled MTF of digital radiographic system using an edge test device,” Med. Phys. 25, 102–113 (1998).
[CrossRef] [PubMed]

Samii, M.

W. Luedemann, T. Brinker, M. U. Schuhmann, A. I. von Brenndorf, M. Samii, “Direct magnification technique for cerebral angiography in the rat,” Invest. Radiol. 7, 421–424 (1998).
[CrossRef]

Sanderink, G. C.

W. D. McDavid, U. Welander, G. C. Sanderink, S. B. Dove, G. Tronje, “A simple method for measuring MTF in direct digital intraoral radiography. Technical note,” Oral Surg. Oral Med. Oral Pathol. 78, 802–805 (1994).
[CrossRef] [PubMed]

Sayag, M.

S. Vedantham, A. Karellas, S. Suryanarayanan, I. Levis, M. Sayag, R. Kleehammer, R. Heidsieck, C. J. D’Orsi, “Mammographic imaging with a small format CCD-based digital cassette: physical characteristics of a clinical system,” Med. Phys. 27, 1832–1840 (2000).
[CrossRef] [PubMed]

Schiabel, H.

H. Schiabel, A. F. Frere, P. M. A. Marques, “The modulation transfer function: a simplified procedure for computer-aided quality evaluation in mammography,” IEEE Eng. Med. Biol. Mag. 16, 93–101 (1997).
[CrossRef] [PubMed]

H. Schiabel, A. Ventura, A. F. Frere, “A formal study of lateral magnification and its influence on mammographic imaging sharpness,” Med. Phys. 2, 271–276 (1994).

Schuhmann, M. U.

W. Luedemann, T. Brinker, M. U. Schuhmann, A. I. von Brenndorf, M. Samii, “Direct magnification technique for cerebral angiography in the rat,” Invest. Radiol. 7, 421–424 (1998).
[CrossRef]

Seibert, J. A.

T. Yu, J. M. Sabol, J. A. Seibert, J. M. Boone, “Scintillating fiber optic screens: A comparison of MTF, light conversion efficiency, and emission angle with Gd2O2S:Tb screens,” Med. Phys. 24, 279–285 (1997).
[CrossRef] [PubMed]

J. M. Boone, T. Yu, J. A. Seibert, “Sinusoidal modulation analysis for optical system MTF measurements,” Med. Phys. 23, 1955–1963 (1996).
[CrossRef] [PubMed]

Shaw, R.

J. C. Dainty, R. Shaw, Image Science (Academic, New York, 1974).

Sones, R. A.

R. A. Sones, G. T. Barnes, “A method to measure the MTF of digital x-ray systems,” Med. Phys. 11, 166–171 (1984).
[CrossRef] [PubMed]

Spahn, M.

M. Spahn, M. Strotzer, M. Volk, S. Bohm, B. Geiger, G. Hahm, S. Feuerbach, “Digital radiography with a large-area, amorphous-silicon, flat-panel X-ray detector system,” Invest. Radiol. 35, 260–266 (2000).
[CrossRef] [PubMed]

Stanton, L.

F. E. Gannon, T. Fields, C. R. Griffith, L. B. Hubbard, M. V. Broadbent, L. Stanton, “Breast radiography: phantom, equipment performance, and radiation dosage comparisons for 28 major mammography centers in the Midwest,” Radiology 149, 579–582 (1983).
[PubMed]

Strotzer, M.

M. Spahn, M. Strotzer, M. Volk, S. Bohm, B. Geiger, G. Hahm, S. Feuerbach, “Digital radiography with a large-area, amorphous-silicon, flat-panel X-ray detector system,” Invest. Radiol. 35, 260–266 (2000).
[CrossRef] [PubMed]

Suryanarayanan, S.

S. Vedantham, A. Karellas, S. Suryanarayanan, I. Levis, M. Sayag, R. Kleehammer, R. Heidsieck, C. J. D’Orsi, “Mammographic imaging with a small format CCD-based digital cassette: physical characteristics of a clinical system,” Med. Phys. 27, 1832–1840 (2000).
[CrossRef] [PubMed]

Thornton, M. M.

D. W. Holdsworth, M. M. Thornton, D. Drost, P. H. Watson, L. J. Fraher, A. B. Hodsman, “Rapid small-animal dual-energy x-ray absorptiometry using digital radiography,” J. Bone Miner. Res. 12, 2451–2457 (2000).
[CrossRef]

Tronje, G.

W. D. McDavid, U. Welander, G. C. Sanderink, S. B. Dove, G. Tronje, “A simple method for measuring MTF in direct digital intraoral radiography. Technical note,” Oral Surg. Oral Med. Oral Pathol. 78, 802–805 (1994).
[CrossRef] [PubMed]

Tsai, D.-Y.

H. Fujita, D.-Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, A. Ohstuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11, 34–39 (1992).
[CrossRef] [PubMed]

Ueda, K.

H. Fujita, D.-Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, A. Ohstuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11, 34–39 (1992).
[CrossRef] [PubMed]

Vandre, R. H.

R. H. Vandre, J. C. Pajak, H. Abdel-Nabi, T. T. Farman, A. G. Farman, “Comparison of observer performance in determining the position of endodontic files with physical measures in the evaluation of dental x-ray imaging systems,” Dentomaxillofac. Radiol. 29, 216–222 (2000).
[CrossRef] [PubMed]

Vargas-Voracek, R.

C. E. Floyd, R. J. Warp, J. T. Dobbins, H. G. Chotas, A. H. Baydush, R. Vargas-Voracek, C. E. Ravin, “Imaging characteristics of an amorphous silicon flat-panel detector for digital chest radiography,” Radiology 218, 683–688 (2001).
[CrossRef] [PubMed]

Vedantham, S.

S. Vedantham, A. Karellas, S. Suryanarayanan, I. Levis, M. Sayag, R. Kleehammer, R. Heidsieck, C. J. D’Orsi, “Mammographic imaging with a small format CCD-based digital cassette: physical characteristics of a clinical system,” Med. Phys. 27, 1832–1840 (2000).
[CrossRef] [PubMed]

Ventura, A.

H. Schiabel, A. Ventura, A. F. Frere, “A formal study of lateral magnification and its influence on mammographic imaging sharpness,” Med. Phys. 2, 271–276 (1994).

Volk, M.

M. Spahn, M. Strotzer, M. Volk, S. Bohm, B. Geiger, G. Hahm, S. Feuerbach, “Digital radiography with a large-area, amorphous-silicon, flat-panel X-ray detector system,” Invest. Radiol. 35, 260–266 (2000).
[CrossRef] [PubMed]

von Brenndorf, A. I.

W. Luedemann, T. Brinker, M. U. Schuhmann, A. I. von Brenndorf, M. Samii, “Direct magnification technique for cerebral angiography in the rat,” Invest. Radiol. 7, 421–424 (1998).
[CrossRef]

Wan, S. Y.

S. Y. Wan, A. P. Kiraly, E. L. Ritman, W. E. Higgins, “Extraction of the hepatic vasculature in rats using 3-D micro-CT images,” IEEE Trans. Med. Imaging 9, 964–971 (2000).

Wang, G.

H. Liu, G. Wang, “Design of a dual CCD configuration to improve the signal-to-noise ratio,” Med. Phys. 27, 2435–2437 (2000).
[CrossRef] [PubMed]

H. Liu, G. Wang, F. Xu, L. L. Fajardo, “Adaptive interpolation for digital mammography systems using multiple detectors,” Appl. Opt. 38, 253–257 (1999).
[CrossRef]

Warp, R. J.

C. E. Floyd, R. J. Warp, J. T. Dobbins, H. G. Chotas, A. H. Baydush, R. Vargas-Voracek, C. E. Ravin, “Imaging characteristics of an amorphous silicon flat-panel detector for digital chest radiography,” Radiology 218, 683–688 (2001).
[CrossRef] [PubMed]

Watson, P. H.

D. W. Holdsworth, M. M. Thornton, D. Drost, P. H. Watson, L. J. Fraher, A. B. Hodsman, “Rapid small-animal dual-energy x-ray absorptiometry using digital radiography,” J. Bone Miner. Res. 12, 2451–2457 (2000).
[CrossRef]

Welander, U.

W. D. McDavid, U. Welander, G. C. Sanderink, S. B. Dove, G. Tronje, “A simple method for measuring MTF in direct digital intraoral radiography. Technical note,” Oral Surg. Oral Med. Oral Pathol. 78, 802–805 (1994).
[CrossRef] [PubMed]

Xu, F.

Yaffe, M. J.

M. J. Yaffe, J. A. Rowlands, “X-ray detectors for digital radiography,” Phys. Med. Biol. 42, 1–39 (1997).
[CrossRef] [PubMed]

C. B. Caldwell, M. J. Yaffe, “Development of an anthropomorphic breast phantom,” Med. Phys. 17, 273–280 (1980).
[CrossRef]

Yu, T.

T. Yu, J. M. Sabol, J. A. Seibert, J. M. Boone, “Scintillating fiber optic screens: A comparison of MTF, light conversion efficiency, and emission angle with Gd2O2S:Tb screens,” Med. Phys. 24, 279–285 (1997).
[CrossRef] [PubMed]

J. M. Boone, T. Yu, J. A. Seibert, “Sinusoidal modulation analysis for optical system MTF measurements,” Med. Phys. 23, 1955–1963 (1996).
[CrossRef] [PubMed]

Zhu, Y. M.

V. Kafrandjian, Y. M. Zhu, G. Roziere, G. Peix, D. Babot, “A comparison of the ball, wire, edge, and bar/space pattern techniques for modulation transfer function measurements of linear x-ray detectors,” J. X-Ray Sci. Technol. 6, 205–221 (1996).
[CrossRef]

Aktuelle Radiol. (1)

M. Kuchler, M. Friedrich, “Focal spot sizes and the geometric unsharpness of mammographic equipment,” Aktuelle Radiol. 2, 205–211 (1992).

Appl. Opt. (1)

Br. J. Radiol. (2)

K. T. K. Karila, “Quality control of mammographic equipment: a 5-year follow-up,” Br. J. Radiol. 61, 1155–1167 (1988).
[CrossRef] [PubMed]

J. Law, “The influence of focal spot size on image resolution and test phantom scores in mammography,” Br. J. Radiol. 66, 441–446 (1993).
[CrossRef] [PubMed]

Dentomaxillofac. Radiol. (2)

R. H. Vandre, J. C. Pajak, H. Abdel-Nabi, T. T. Farman, A. G. Farman, “Comparison of observer performance in determining the position of endodontic files with physical measures in the evaluation of dental x-ray imaging systems,” Dentomaxillofac. Radiol. 29, 216–222 (2000).
[CrossRef] [PubMed]

K. Araki, A. Endo, T. Okano, “An objective comparison of four digital intra-oral radiographic systems: sensitometric properties and resolution,” Dentomaxillofac. Radiol. 29, 76–80 (2000).
[CrossRef] [PubMed]

IEEE Eng. Med. Biol. Mag. (1)

H. Schiabel, A. F. Frere, P. M. A. Marques, “The modulation transfer function: a simplified procedure for computer-aided quality evaluation in mammography,” IEEE Eng. Med. Biol. Mag. 16, 93–101 (1997).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (2)

S. Y. Wan, A. P. Kiraly, E. L. Ritman, W. E. Higgins, “Extraction of the hepatic vasculature in rats using 3-D micro-CT images,” IEEE Trans. Med. Imaging 9, 964–971 (2000).

H. Fujita, D.-Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, A. Ohstuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11, 34–39 (1992).
[CrossRef] [PubMed]

Invest. Radiol. (2)

M. Spahn, M. Strotzer, M. Volk, S. Bohm, B. Geiger, G. Hahm, S. Feuerbach, “Digital radiography with a large-area, amorphous-silicon, flat-panel X-ray detector system,” Invest. Radiol. 35, 260–266 (2000).
[CrossRef] [PubMed]

W. Luedemann, T. Brinker, M. U. Schuhmann, A. I. von Brenndorf, M. Samii, “Direct magnification technique for cerebral angiography in the rat,” Invest. Radiol. 7, 421–424 (1998).
[CrossRef]

J. Bone Miner. Res. (1)

D. W. Holdsworth, M. M. Thornton, D. Drost, P. H. Watson, L. J. Fraher, A. B. Hodsman, “Rapid small-animal dual-energy x-ray absorptiometry using digital radiography,” J. Bone Miner. Res. 12, 2451–2457 (2000).
[CrossRef]

J. X-Ray Sci. Technol. (1)

V. Kafrandjian, Y. M. Zhu, G. Roziere, G. Peix, D. Babot, “A comparison of the ball, wire, edge, and bar/space pattern techniques for modulation transfer function measurements of linear x-ray detectors,” J. X-Ray Sci. Technol. 6, 205–221 (1996).
[CrossRef]

Med. Phys. (12)

E. Samei, M. Flynn, “A method for measuring the presampled MTF of digital radiographic system using an edge test device,” Med. Phys. 25, 102–113 (1998).
[CrossRef] [PubMed]

E. Samei, M. J. Flynn, D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys. 25, 102–113 (1998).
[CrossRef] [PubMed]

T. Yu, J. M. Sabol, J. A. Seibert, J. M. Boone, “Scintillating fiber optic screens: A comparison of MTF, light conversion efficiency, and emission angle with Gd2O2S:Tb screens,” Med. Phys. 24, 279–285 (1997).
[CrossRef] [PubMed]

J. M. Boone, T. Yu, J. A. Seibert, “Sinusoidal modulation analysis for optical system MTF measurements,” Med. Phys. 23, 1955–1963 (1996).
[CrossRef] [PubMed]

R. A. Sones, G. T. Barnes, “A method to measure the MTF of digital x-ray systems,” Med. Phys. 11, 166–171 (1984).
[CrossRef] [PubMed]

M. L. Giger, K. Doi, “Investigation of basic imaging properties in digital radiography. I. Modulation transfer function,” Med. Phys. 11, 287–295 (1984).
[CrossRef] [PubMed]

M. J. Flynn, E. Samei, “Experimental comparison of noise and resolution for 2K and 4K storage phosphor radiography systems,” Med. Phys. 26, 1612–1623 (1999).
[CrossRef] [PubMed]

H. Schiabel, A. Ventura, A. F. Frere, “A formal study of lateral magnification and its influence on mammographic imaging sharpness,” Med. Phys. 2, 271–276 (1994).

H. Liu, G. Wang, “Design of a dual CCD configuration to improve the signal-to-noise ratio,” Med. Phys. 27, 2435–2437 (2000).
[CrossRef] [PubMed]

S. Vedantham, A. Karellas, S. Suryanarayanan, I. Levis, M. Sayag, R. Kleehammer, R. Heidsieck, C. J. D’Orsi, “Mammographic imaging with a small format CCD-based digital cassette: physical characteristics of a clinical system,” Med. Phys. 27, 1832–1840 (2000).
[CrossRef] [PubMed]

C. B. Caldwell, M. J. Yaffe, “Development of an anthropomorphic breast phantom,” Med. Phys. 17, 273–280 (1980).
[CrossRef]

J. M. Boone, “Determination of the presampled MTF in computed tomography,” Med. Phys. 283, 56–360 (2001).

Oral Surg. Oral Med. Oral Pathol. (1)

W. D. McDavid, U. Welander, G. C. Sanderink, S. B. Dove, G. Tronje, “A simple method for measuring MTF in direct digital intraoral radiography. Technical note,” Oral Surg. Oral Med. Oral Pathol. 78, 802–805 (1994).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

C. E. Metz, K. Doi, “Transfer function analysis of radiographic imaging systems,” Phys. Med. Biol. 24, 1079–1106 (1979).
[CrossRef] [PubMed]

M. J. Yaffe, J. A. Rowlands, “X-ray detectors for digital radiography,” Phys. Med. Biol. 42, 1–39 (1997).
[CrossRef] [PubMed]

Radiology (2)

C. E. Floyd, R. J. Warp, J. T. Dobbins, H. G. Chotas, A. H. Baydush, R. Vargas-Voracek, C. E. Ravin, “Imaging characteristics of an amorphous silicon flat-panel detector for digital chest radiography,” Radiology 218, 683–688 (2001).
[CrossRef] [PubMed]

F. E. Gannon, T. Fields, C. R. Griffith, L. B. Hubbard, M. V. Broadbent, L. Stanton, “Breast radiography: phantom, equipment performance, and radiation dosage comparisons for 28 major mammography centers in the Midwest,” Radiology 149, 579–582 (1983).
[PubMed]

Other (1)

J. C. Dainty, R. Shaw, Image Science (Academic, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Different components of the digital x-ray imaging system. The adjustable distance between the object and the detector provides several levels of magnification. The focal spot is 20 µm, and the x-ray beam images a 10.16 cm × 5.08 cm area on the surface of the scintillator. The x-ray photons are converted to light photons that are conveyed to two CCD imaging arrays through fiber tapers with approximately 2:1 demagnification ratio.

Fig. 2
Fig. 2

Expected spatial resolution of the detector as a function of the magnification factor, averaged over the resolutions of the left and the right CCD arrays. The resolution of each CCD was determined by measurement of the number of pixels covered by a thin metal gauge (see Table 1).

Fig. 3
Fig. 3

X-ray images of line-pair targets and sector test patterns at different magnifications: (a), (b) 1×; (c), (d) 1.5×; (e), (f) 3×. The resolution increases with the magnification, but not linearly because of the penumbra effect and other lack-of-sharpness factors. The final vertical bar on the right in (b), (d), and (f) is the mark for 20 lp/mm.

Fig. 4
Fig. 4

MTF of the CCD system at magnification 1×, obtained with a 10-µm lead slit.

Fig. 5
Fig. 5

MTF of the CCD system at magnification 2×, obtained with a 10-µm lead slit.

Fig. 6
Fig. 6

MTF of the CCD system at magnification 3×, obtained with a 10-µm lead slit.

Fig. 7
Fig. 7

MTF of the CCD system at magnification 4×, obtained with a 10-µm lead slit.

Fig. 8
Fig. 8

MTF of the CCD system at magnification 5×, obtained with a 10-µm lead slit.

Fig. 9
Fig. 9

MTF of the left CCD obtained with a 10-µm lead slit at different magnifications: (A) 1×, (B) 2×, (C) 3×, (D) 4×, (E) 5×.

Fig. 10
Fig. 10

MTF of the central area of the detector system obtained with a 10-µm lead slit at different magnifications: (A) 1×, (B) 2×, (C) 3×, (D) 4×, (E) 5×.

Fig. 11
Fig. 11

MTF of the right CCD obtained with a 10-µm lead slit at different magnifications: (A) 1×, (B) 2×, (C) 3×, (D) 4×, (E) 5×.

Fig. 12
Fig. 12

Spatial resolutions of the digital x-ray imaging system at different levels of modulations as functions of the magnification factor: triangles, expected resolution values; circles, measured resolution at 5% modulation; squares, measured resolution at 10% modulation; diamonds, measured resolution at 50% modulation. At low magnification, the measured resolutions are close to that of the expected values. When the magnification increases, the difference also increases. However, the measured values still indicate significant increases in the spatial resolution achieved by the magnification.

Tables (3)

Tables Icon

Table 1 Expected Spatial Resolutions at Different Magnification Levelsa

Tables Icon

Table 2 Theoretical Nyquist and Expected Spatial Resolutions versus Observer-Based Measured Spatial Resolutions of Line-Pair Targets and Sector Test Patternsa

Tables Icon

Table 3 Spatial Resolutions at Different Modulation Levels for the Three Areas of the Detectora

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

fex=12Δx,
lx=yhx, ydy,
FTlx=MTFlu=xyhx, ydyexp-j2πuxdx=x,yhx, yexp-j2πux+vydxdyv=o=FThx, y|v=0=MTFhu, v|v=0.

Metrics