Abstract

Seidel aberration coefficients can be expressed by Zernike coefficients. The least-squares matrix-inversion method of determining Zernike coefficients from a sampled wave front with measurement noise has been found to be numerically unstable. We present a method of estimating the Seidel aberration coefficients by using a two-dimensional discrete wavelet transform. This method is applied to analyze the wave front of an optical system, and we obtain not only more-accurate Seidel aberration coefficients, but we also speed the computation. Three simulated wave fronts are fitted, and simulation results are shown for spherical aberration, coma, astigmatism, and defocus.

© 2002 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription