Abstract

The first experimental investigation of a normal-incidence Mo–Y multilayer-coated diffraction grating operating at a 9-nm wavelength is reported. The substrate is a replica of a concave holographic ion-etched blazed grating with 2400 grooves/mm and a 2-m radius of curvature. The measured peak efficiency in the −3 order is 2.7% at a wavelength of 8.79 nm. To our knowledge, this is the highest normal-incidence grating efficiency ever obtained in this wavelength region.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Bruner, B. M. Haisch, W. A. Brown, L. W. Acton, J. H. Underwood, “Soft x-ray images of the solar corona using normal incidence optics,” J. Phys. (Paris) Suppl. 49, 115–118 (1988).
  2. Information on the SOHO mission is available at http://sohowww.nascom.nasa.gov .
  3. Information on the TRACE mission is available at http://vestige.lmsal.com/TRACE/ .
  4. J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Ely, K. G. Stilt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Manioc mounts,” Appl. Opt. 34, 7347–7354 (1995).
    [CrossRef] [PubMed]
  5. J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heizmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).
    [CrossRef]
  6. J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
    [CrossRef] [PubMed]
  7. J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600 line/mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).
    [CrossRef] [PubMed]
  8. C. Montcalm, S. Bajt, J. F. Seely, “MoRu–Be multilayer-coated grating with 10.4% normal-incidence efficiency in the 11.4-nm wavelength region,” Opt. Lett. 26, 125–127 (2001).
    [CrossRef]
  9. J. F. Seely, C. Montcalm, S. Baker, S. Bajt, “High-efficiency MoRu–Be multilayer-coated gratings operating near normal incidence in the 11.1–12.0-nm wavelength range,” Appl. Opt. 40, 5565–5574 (2001).
    [CrossRef]
  10. U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme ultraviolet observation,” Astrophys. J. Suppl. 81, 387–408 (1992).
    [CrossRef]
  11. Information on the EUVE mission and the observed spectral lines can be obtained at http://ssl.berkeley.edu/euve .
  12. Reports of measured multilayer reflectances are available at http://www-cxro.lbl.gov/multilayer/survey.html .
  13. B. Sae-Lao, C. Montcalm, “Molybdenum-strontium multilayer mirrors for the 8–12-nm extreme-ultraviolet wavelength region,” Opt. Lett. 26, 468–470 (2001).
    [CrossRef]
  14. C. Montcalm, B. T. Sullivan, M. Ranger, H. Pépin, “Ultrahigh vacuum deposition-reflectometer system for the in situ investigation of Y/Mo extreme ultraviolet multilayer mirrors,” J. Vac. Sci. Technol. A 15, 3069–3081 (1997).
    [CrossRef]
  15. E. Spiller, Soft X-Ray Optics, Vol. PM15 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 1994).
  16. B. L. Henke, J. Y. Uejid, H. T. Yamada, R. T. Tackaberry, “Characterization of multilayer x-ray analysers: model and measurements,” Opt. Eng. 25, 937–947 (1986).
    [CrossRef]
  17. J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50–1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998).
    [CrossRef]
  18. E. M. Gullikson, S. Mrowka, B. B. Kaufmann, “Recent developments in the EUV reflectometry at the Advanced Light Source,” in Emerging Lithographic Technologies V, E. A. Dobisz, ed., Proc. SPIE4343, 363–373 (2001).
    [CrossRef]
  19. D. L. Windt, “IMD: software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998); a copy of the software can be downloaded at http://cletus.phys.columbia.edu/∼windt/imd/ .
  20. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993); these data are also available in electronic form at http://www-cxro.lbl.gov .
  21. L. I. Goray, “Numerical analysis for relief gratings working in the soft x-ray and XUV region by the integral equation method,” in X-Ray and UV Detectors, R. B. Hoover, M. W. Tate, eds., Proc. SPIE2278, 168–172 (1994).
    [CrossRef]
  22. L. I. Goray, B. C. Chernov, “Comparison of rigorous methods for x-ray and XUV grating diffraction analysis,” in X-Ray and Extreme Ultraviolet Optics, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE2515, 240–245 (1995).
    [CrossRef]
  23. L. I. Goray, J. F. Seely, “Efficiencies of master, replica, and multilayer gratings for the soft x-ray–EUV range: modeling based on the modified integral method and comparisons to measurements,” Appl. Opt. 41, 1434–1445 (2002).
    [CrossRef] [PubMed]

2002 (1)

2001 (3)

1998 (2)

J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50–1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998).
[CrossRef]

D. L. Windt, “IMD: software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998); a copy of the software can be downloaded at http://cletus.phys.columbia.edu/∼windt/imd/ .

1997 (2)

C. Montcalm, B. T. Sullivan, M. Ranger, H. Pépin, “Ultrahigh vacuum deposition-reflectometer system for the in situ investigation of Y/Mo extreme ultraviolet multilayer mirrors,” J. Vac. Sci. Technol. A 15, 3069–3081 (1997).
[CrossRef]

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heizmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).
[CrossRef]

1995 (2)

1993 (2)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993); these data are also available in electronic form at http://www-cxro.lbl.gov .

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

1992 (1)

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme ultraviolet observation,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

1988 (1)

M. E. Bruner, B. M. Haisch, W. A. Brown, L. W. Acton, J. H. Underwood, “Soft x-ray images of the solar corona using normal incidence optics,” J. Phys. (Paris) Suppl. 49, 115–118 (1988).

1986 (1)

B. L. Henke, J. Y. Uejid, H. T. Yamada, R. T. Tackaberry, “Characterization of multilayer x-ray analysers: model and measurements,” Opt. Eng. 25, 937–947 (1986).
[CrossRef]

Acton, L. W.

M. E. Bruner, B. M. Haisch, W. A. Brown, L. W. Acton, J. H. Underwood, “Soft x-ray images of the solar corona using normal incidence optics,” J. Phys. (Paris) Suppl. 49, 115–118 (1988).

Bajt, S.

Baker, S.

Barbee, T. W.

Boyer, C. N.

Brown, C. M.

Brown, W. A.

M. E. Bruner, B. M. Haisch, W. A. Brown, L. W. Acton, J. H. Underwood, “Soft x-ray images of the solar corona using normal incidence optics,” J. Phys. (Paris) Suppl. 49, 115–118 (1988).

Bruner, M. E.

M. E. Bruner, B. M. Haisch, W. A. Brown, L. W. Acton, J. H. Underwood, “Soft x-ray images of the solar corona using normal incidence optics,” J. Phys. (Paris) Suppl. 49, 115–118 (1988).

Chernov, B. C.

L. I. Goray, B. C. Chernov, “Comparison of rigorous methods for x-ray and XUV grating diffraction analysis,” in X-Ray and Extreme Ultraviolet Optics, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE2515, 240–245 (1995).
[CrossRef]

Cruddace, R. G.

Davis, J. C.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993); these data are also available in electronic form at http://www-cxro.lbl.gov .

Doschek, G. A.

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme ultraviolet observation,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

Ely, R.

Feldman, U.

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme ultraviolet observation,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

Goray, L. I.

L. I. Goray, J. F. Seely, “Efficiencies of master, replica, and multilayer gratings for the soft x-ray–EUV range: modeling based on the modified integral method and comparisons to measurements,” Appl. Opt. 41, 1434–1445 (2002).
[CrossRef] [PubMed]

L. I. Goray, “Numerical analysis for relief gratings working in the soft x-ray and XUV region by the integral equation method,” in X-Ray and UV Detectors, R. B. Hoover, M. W. Tate, eds., Proc. SPIE2278, 168–172 (1994).
[CrossRef]

L. I. Goray, B. C. Chernov, “Comparison of rigorous methods for x-ray and XUV grating diffraction analysis,” in X-Ray and Extreme Ultraviolet Optics, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE2515, 240–245 (1995).
[CrossRef]

Gullikson, E. M.

J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50–1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998).
[CrossRef]

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993); these data are also available in electronic form at http://www-cxro.lbl.gov .

E. M. Gullikson, S. Mrowka, B. B. Kaufmann, “Recent developments in the EUV reflectometry at the Advanced Light Source,” in Emerging Lithographic Technologies V, E. A. Dobisz, ed., Proc. SPIE4343, 363–373 (2001).
[CrossRef]

Gursky, H.

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme ultraviolet observation,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

Haisch, B. M.

M. E. Bruner, B. M. Haisch, W. A. Brown, L. W. Acton, J. H. Underwood, “Soft x-ray images of the solar corona using normal incidence optics,” J. Phys. (Paris) Suppl. 49, 115–118 (1988).

Heidemann, K. F.

Heizmann, U.

Henke, B. L.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993); these data are also available in electronic form at http://www-cxro.lbl.gov .

B. L. Henke, J. Y. Uejid, H. T. Yamada, R. T. Tackaberry, “Characterization of multilayer x-ray analysers: model and measurements,” Opt. Eng. 25, 937–947 (1986).
[CrossRef]

Holland, G. E.

Hunter, W. R.

Kaufmann, B. B.

E. M. Gullikson, S. Mrowka, B. B. Kaufmann, “Recent developments in the EUV reflectometry at the Advanced Light Source,” in Emerging Lithographic Technologies V, E. A. Dobisz, ed., Proc. SPIE4343, 363–373 (2001).
[CrossRef]

Kleineberg, U.

Kowalski, M. P.

Mandelbaum, P.

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme ultraviolet observation,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

Menke, D.

Montcalm, C.

Mrowka, S.

E. M. Gullikson, S. Mrowka, B. B. Kaufmann, “Recent developments in the EUV reflectometry at the Advanced Light Source,” in Emerging Lithographic Technologies V, E. A. Dobisz, ed., Proc. SPIE4343, 363–373 (2001).
[CrossRef]

Osterried, K.

Pépin, H.

C. Montcalm, B. T. Sullivan, M. Ranger, H. Pépin, “Ultrahigh vacuum deposition-reflectometer system for the in situ investigation of Y/Mo extreme ultraviolet multilayer mirrors,” J. Vac. Sci. Technol. A 15, 3069–3081 (1997).
[CrossRef]

Ranger, M.

C. Montcalm, B. T. Sullivan, M. Ranger, H. Pépin, “Ultrahigh vacuum deposition-reflectometer system for the in situ investigation of Y/Mo extreme ultraviolet multilayer mirrors,” J. Vac. Sci. Technol. A 15, 3069–3081 (1997).
[CrossRef]

Rife, J. C.

Sae-Lao, B.

Seely, J. F.

L. I. Goray, J. F. Seely, “Efficiencies of master, replica, and multilayer gratings for the soft x-ray–EUV range: modeling based on the modified integral method and comparisons to measurements,” Appl. Opt. 41, 1434–1445 (2002).
[CrossRef] [PubMed]

C. Montcalm, S. Bajt, J. F. Seely, “MoRu–Be multilayer-coated grating with 10.4% normal-incidence efficiency in the 11.4-nm wavelength region,” Opt. Lett. 26, 125–127 (2001).
[CrossRef]

J. F. Seely, C. Montcalm, S. Baker, S. Bajt, “High-efficiency MoRu–Be multilayer-coated gratings operating near normal incidence in the 11.1–12.0-nm wavelength range,” Appl. Opt. 40, 5565–5574 (2001).
[CrossRef]

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heizmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).
[CrossRef]

J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600 line/mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).
[CrossRef] [PubMed]

J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Ely, K. G. Stilt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Manioc mounts,” Appl. Opt. 34, 7347–7354 (1995).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme ultraviolet observation,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

Spiller, E.

E. Spiller, Soft X-Ray Optics, Vol. PM15 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 1994).

Stilt, K. G.

Sullivan, B. T.

C. Montcalm, B. T. Sullivan, M. Ranger, H. Pépin, “Ultrahigh vacuum deposition-reflectometer system for the in situ investigation of Y/Mo extreme ultraviolet multilayer mirrors,” J. Vac. Sci. Technol. A 15, 3069–3081 (1997).
[CrossRef]

Tackaberry, R. T.

B. L. Henke, J. Y. Uejid, H. T. Yamada, R. T. Tackaberry, “Characterization of multilayer x-ray analysers: model and measurements,” Opt. Eng. 25, 937–947 (1986).
[CrossRef]

Uejid, J. Y.

B. L. Henke, J. Y. Uejid, H. T. Yamada, R. T. Tackaberry, “Characterization of multilayer x-ray analysers: model and measurements,” Opt. Eng. 25, 937–947 (1986).
[CrossRef]

Underwood, J. H.

J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50–1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998).
[CrossRef]

M. E. Bruner, B. M. Haisch, W. A. Brown, L. W. Acton, J. H. Underwood, “Soft x-ray images of the solar corona using normal incidence optics,” J. Phys. (Paris) Suppl. 49, 115–118 (1988).

Windt, D. L.

D. L. Windt, “IMD: software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998); a copy of the software can be downloaded at http://cletus.phys.columbia.edu/∼windt/imd/ .

Yamada, H. T.

B. L. Henke, J. Y. Uejid, H. T. Yamada, R. T. Tackaberry, “Characterization of multilayer x-ray analysers: model and measurements,” Opt. Eng. 25, 937–947 (1986).
[CrossRef]

Appl. Opt. (6)

J. F. Seely, R. G. Cruddace, M. P. Kowalski, W. R. Hunter, T. W. Barbee, J. C. Rife, R. Ely, K. G. Stilt, “Polarization and efficiency of a concave multilayer grating in the 135–250-Å region and in normal-incidence and Seya–Manioc mounts,” Appl. Opt. 34, 7347–7354 (1995).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heizmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å wavelength region,” Appl. Opt. 36, 8206–8213 (1997).
[CrossRef]

J. F. Seely, M. P. Kowalski, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, “On-blaze operation of a Mo/Si multilayer-coated concave diffraction grating in the 136–142-Å wavelength and near normal incidence,” Appl. Opt. 32, 4890–4897 (1993).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee, R. G. Cruddace, J. C. Rife, “Normal-incidence efficiencies in the 115–340-Å wavelength region of replicas of the Skylab 3600 line/mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453–6458 (1995).
[CrossRef] [PubMed]

J. F. Seely, C. Montcalm, S. Baker, S. Bajt, “High-efficiency MoRu–Be multilayer-coated gratings operating near normal incidence in the 11.1–12.0-nm wavelength range,” Appl. Opt. 40, 5565–5574 (2001).
[CrossRef]

L. I. Goray, J. F. Seely, “Efficiencies of master, replica, and multilayer gratings for the soft x-ray–EUV range: modeling based on the modified integral method and comparisons to measurements,” Appl. Opt. 41, 1434–1445 (2002).
[CrossRef] [PubMed]

Astrophys. J. Suppl. (1)

U. Feldman, P. Mandelbaum, J. F. Seely, G. A. Doschek, H. Gursky, “The potential for plasma diagnostics from stellar extreme ultraviolet observation,” Astrophys. J. Suppl. 81, 387–408 (1992).
[CrossRef]

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993); these data are also available in electronic form at http://www-cxro.lbl.gov .

Comput. Phys. (1)

D. L. Windt, “IMD: software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998); a copy of the software can be downloaded at http://cletus.phys.columbia.edu/∼windt/imd/ .

J. Electron Spectrosc. Relat. Phenom. (1)

J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50–1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998).
[CrossRef]

J. Phys. (Paris) Suppl. (1)

M. E. Bruner, B. M. Haisch, W. A. Brown, L. W. Acton, J. H. Underwood, “Soft x-ray images of the solar corona using normal incidence optics,” J. Phys. (Paris) Suppl. 49, 115–118 (1988).

J. Vac. Sci. Technol. A (1)

C. Montcalm, B. T. Sullivan, M. Ranger, H. Pépin, “Ultrahigh vacuum deposition-reflectometer system for the in situ investigation of Y/Mo extreme ultraviolet multilayer mirrors,” J. Vac. Sci. Technol. A 15, 3069–3081 (1997).
[CrossRef]

Opt. Eng. (1)

B. L. Henke, J. Y. Uejid, H. T. Yamada, R. T. Tackaberry, “Characterization of multilayer x-ray analysers: model and measurements,” Opt. Eng. 25, 937–947 (1986).
[CrossRef]

Opt. Lett. (2)

Other (8)

Information on the EUVE mission and the observed spectral lines can be obtained at http://ssl.berkeley.edu/euve .

Reports of measured multilayer reflectances are available at http://www-cxro.lbl.gov/multilayer/survey.html .

E. M. Gullikson, S. Mrowka, B. B. Kaufmann, “Recent developments in the EUV reflectometry at the Advanced Light Source,” in Emerging Lithographic Technologies V, E. A. Dobisz, ed., Proc. SPIE4343, 363–373 (2001).
[CrossRef]

E. Spiller, Soft X-Ray Optics, Vol. PM15 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 1994).

Information on the SOHO mission is available at http://sohowww.nascom.nasa.gov .

Information on the TRACE mission is available at http://vestige.lmsal.com/TRACE/ .

L. I. Goray, “Numerical analysis for relief gratings working in the soft x-ray and XUV region by the integral equation method,” in X-Ray and UV Detectors, R. B. Hoover, M. W. Tate, eds., Proc. SPIE2278, 168–172 (1994).
[CrossRef]

L. I. Goray, B. C. Chernov, “Comparison of rigorous methods for x-ray and XUV grating diffraction analysis,” in X-Ray and Extreme Ultraviolet Optics, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE2515, 240–245 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic drawing of the multilayer blazed grating.

Fig. 2
Fig. 2

Schematic drawing of the ultrahigh-vacuum magnetron-sputtering deposition system.

Fig. 3
Fig. 3

Typical XRD spectrum of a Mo–Y multilayer measured (a) at small grazing incidence angles from 0° to 12° and (b) at large grazing angles from 25° to 45°. The sharp peak at approximately 33° is the Si peak from the single-crystal 〈100〉 substrate.

Fig. 4
Fig. 4

Normal-incidence (measured 3° from normal) reflectance of a Mo–Y multilayer deposited on a flat Si wafer substrate. Experimental data (dots) and the best fit (solid curve) are shown.

Fig. 5
Fig. 5

AFM images (1 µm × 1 µm) of the grating (a) before and (b) after application of the Mo–Y multilayer coating.

Fig. 6
Fig. 6

Zero-order grating efficiency measured at 8° from normal incidence (dotted curve) and the predicted reflectance (dashed curve) of the witness Mo–Y multilayer coating obtained from the fit.

Fig. 7
Fig. 7

Efficiencies of the grating measured in various diffraction orders at 3° and 8° normal-incidence angles.

Fig. 8
Fig. 8

Peak efficiencies of the grating measured at an 8° angle of incidence as a function of wavelength. The highest measured efficiency was 2.7% in the −3 order at a wavelength of 8.79 nm.

Fig. 9
Fig. 9

Grating efficiencies calculated for an 8° angle of incidence as a function of wavelength.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

mλ=dsin α-sin β,
±mλ=2d sin ϕb sin θ,
nλ=2dBragg1-δ/sin2 θsin θ=2Λ sin θ,
Λ=dBragg1-δ=±dsin ϕb/m.
1/dBragg=1/Λ1-δ/sin2 θ,
Λ=rMotMo+rYtY+ΔΛ,

Metrics