Abstract

We examine the light-activation properties of micrometer-sized gear structures fabricated with polysilicon surface micromachining techniques. The gears are held in place on a substrate through a capped anchor post and are free to rotate about the post. The light-activation technique is modeled on photon radiation pressure, and the equation of motion of the gear is solved for this activation technique. Experimental measurements of torque and damping are found to be consistent with expected results for micrometer-scale devices. Design optimization for optically actuated microstructures is discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. B. Lee, Y. H. Cho, “Laterally driven electrostatic repulsive force microactuators using asymmetric field distribution,” IEEE J. Microelectromech. Sys. 10, 128–136 (2001).
    [CrossRef]
  2. D. J. Sadler, T. M. Liakopoulos, C. H. Ahn, “A universal electromagnetic microactuator using magnetic interconnection concepts,” IEEE J. Microelectromech. Sys. 9, 460–468 (2000).
    [CrossRef]
  3. E. S. Kolesar, P. B. Allen, J. T. Howard, J. M. Wilken, N. C. Boydston, “Thermally actuated microbeam for large in-plane mechanical deflections,” J. Vac. Sci. Technol. A17, 2257–2263 (1999).
  4. R. M. Moroney, R. M. White, R. T. Howe, “Ultrasonic micromotors: physics and applications,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop, Napa Valley, Calif., 11–14 Feb. 1990. (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 182–187 (1990).
  5. D. Bishop, R. Giles, C. Roxlo, “Micromirrors relieve communications bottlenecks,” Photonics Spectra2000, 167–169.
  6. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  8. M. W. Berns, “Laser scissors and tweezers,” Sci. Am.62–67 (1998).
    [CrossRef]
  9. A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Let. 40, 729–732.
  10. R. C. Gauthier, M. Ashman, “Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams,” Appl. Opt. 37, 6421–6430 (1998).
    [CrossRef]
  11. D. A. Koester, R. Mahadevan, A. Shishkoff, K. W. Markus, MUMPS Design Handbook Rev. 4.0, (Cronos Integrated Microsystems, Research Triangle Park, N.C., 1999).
  12. J. S. Kim, S. W. Kim, “Dynamic motion analysis of optically trapped non-spherical particles with off-axis position and arbitrary orientation,” Appl. Opt. 39, 4327–4332 (2000).
    [CrossRef]

2001

K. B. Lee, Y. H. Cho, “Laterally driven electrostatic repulsive force microactuators using asymmetric field distribution,” IEEE J. Microelectromech. Sys. 10, 128–136 (2001).
[CrossRef]

2000

D. J. Sadler, T. M. Liakopoulos, C. H. Ahn, “A universal electromagnetic microactuator using magnetic interconnection concepts,” IEEE J. Microelectromech. Sys. 9, 460–468 (2000).
[CrossRef]

D. Bishop, R. Giles, C. Roxlo, “Micromirrors relieve communications bottlenecks,” Photonics Spectra2000, 167–169.

J. S. Kim, S. W. Kim, “Dynamic motion analysis of optically trapped non-spherical particles with off-axis position and arbitrary orientation,” Appl. Opt. 39, 4327–4332 (2000).
[CrossRef]

1999

E. S. Kolesar, P. B. Allen, J. T. Howard, J. M. Wilken, N. C. Boydston, “Thermally actuated microbeam for large in-plane mechanical deflections,” J. Vac. Sci. Technol. A17, 2257–2263 (1999).

1998

1986

1970

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Ahn, C. H.

D. J. Sadler, T. M. Liakopoulos, C. H. Ahn, “A universal electromagnetic microactuator using magnetic interconnection concepts,” IEEE J. Microelectromech. Sys. 9, 460–468 (2000).
[CrossRef]

Allen, P. B.

E. S. Kolesar, P. B. Allen, J. T. Howard, J. M. Wilken, N. C. Boydston, “Thermally actuated microbeam for large in-plane mechanical deflections,” J. Vac. Sci. Technol. A17, 2257–2263 (1999).

Ashkin, A.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Let. 40, 729–732.

Ashman, M.

Berns, M. W.

M. W. Berns, “Laser scissors and tweezers,” Sci. Am.62–67 (1998).
[CrossRef]

Bishop, D.

D. Bishop, R. Giles, C. Roxlo, “Micromirrors relieve communications bottlenecks,” Photonics Spectra2000, 167–169.

Bjorkholm, J. E.

Boydston, N. C.

E. S. Kolesar, P. B. Allen, J. T. Howard, J. M. Wilken, N. C. Boydston, “Thermally actuated microbeam for large in-plane mechanical deflections,” J. Vac. Sci. Technol. A17, 2257–2263 (1999).

Cho, Y. H.

K. B. Lee, Y. H. Cho, “Laterally driven electrostatic repulsive force microactuators using asymmetric field distribution,” IEEE J. Microelectromech. Sys. 10, 128–136 (2001).
[CrossRef]

Chu, S.

Dziedzic, J. M.

Gauthier, R. C.

Giles, R.

D. Bishop, R. Giles, C. Roxlo, “Micromirrors relieve communications bottlenecks,” Photonics Spectra2000, 167–169.

Howard, J. T.

E. S. Kolesar, P. B. Allen, J. T. Howard, J. M. Wilken, N. C. Boydston, “Thermally actuated microbeam for large in-plane mechanical deflections,” J. Vac. Sci. Technol. A17, 2257–2263 (1999).

Howe, R. T.

R. M. Moroney, R. M. White, R. T. Howe, “Ultrasonic micromotors: physics and applications,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop, Napa Valley, Calif., 11–14 Feb. 1990. (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 182–187 (1990).

Kim, J. S.

Kim, S. W.

Koester, D. A.

D. A. Koester, R. Mahadevan, A. Shishkoff, K. W. Markus, MUMPS Design Handbook Rev. 4.0, (Cronos Integrated Microsystems, Research Triangle Park, N.C., 1999).

Kolesar, E. S.

E. S. Kolesar, P. B. Allen, J. T. Howard, J. M. Wilken, N. C. Boydston, “Thermally actuated microbeam for large in-plane mechanical deflections,” J. Vac. Sci. Technol. A17, 2257–2263 (1999).

Lee, K. B.

K. B. Lee, Y. H. Cho, “Laterally driven electrostatic repulsive force microactuators using asymmetric field distribution,” IEEE J. Microelectromech. Sys. 10, 128–136 (2001).
[CrossRef]

Liakopoulos, T. M.

D. J. Sadler, T. M. Liakopoulos, C. H. Ahn, “A universal electromagnetic microactuator using magnetic interconnection concepts,” IEEE J. Microelectromech. Sys. 9, 460–468 (2000).
[CrossRef]

Mahadevan, R.

D. A. Koester, R. Mahadevan, A. Shishkoff, K. W. Markus, MUMPS Design Handbook Rev. 4.0, (Cronos Integrated Microsystems, Research Triangle Park, N.C., 1999).

Markus, K. W.

D. A. Koester, R. Mahadevan, A. Shishkoff, K. W. Markus, MUMPS Design Handbook Rev. 4.0, (Cronos Integrated Microsystems, Research Triangle Park, N.C., 1999).

Moroney, R. M.

R. M. Moroney, R. M. White, R. T. Howe, “Ultrasonic micromotors: physics and applications,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop, Napa Valley, Calif., 11–14 Feb. 1990. (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 182–187 (1990).

Roxlo, C.

D. Bishop, R. Giles, C. Roxlo, “Micromirrors relieve communications bottlenecks,” Photonics Spectra2000, 167–169.

Sadler, D. J.

D. J. Sadler, T. M. Liakopoulos, C. H. Ahn, “A universal electromagnetic microactuator using magnetic interconnection concepts,” IEEE J. Microelectromech. Sys. 9, 460–468 (2000).
[CrossRef]

Shishkoff, A.

D. A. Koester, R. Mahadevan, A. Shishkoff, K. W. Markus, MUMPS Design Handbook Rev. 4.0, (Cronos Integrated Microsystems, Research Triangle Park, N.C., 1999).

White, R. M.

R. M. Moroney, R. M. White, R. T. Howe, “Ultrasonic micromotors: physics and applications,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop, Napa Valley, Calif., 11–14 Feb. 1990. (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 182–187 (1990).

Wilken, J. M.

E. S. Kolesar, P. B. Allen, J. T. Howard, J. M. Wilken, N. C. Boydston, “Thermally actuated microbeam for large in-plane mechanical deflections,” J. Vac. Sci. Technol. A17, 2257–2263 (1999).

Appl. Opt.

IEEE J. Microelectromech. Sys.

K. B. Lee, Y. H. Cho, “Laterally driven electrostatic repulsive force microactuators using asymmetric field distribution,” IEEE J. Microelectromech. Sys. 10, 128–136 (2001).
[CrossRef]

D. J. Sadler, T. M. Liakopoulos, C. H. Ahn, “A universal electromagnetic microactuator using magnetic interconnection concepts,” IEEE J. Microelectromech. Sys. 9, 460–468 (2000).
[CrossRef]

J. Vac. Sci. Technol.

E. S. Kolesar, P. B. Allen, J. T. Howard, J. M. Wilken, N. C. Boydston, “Thermally actuated microbeam for large in-plane mechanical deflections,” J. Vac. Sci. Technol. A17, 2257–2263 (1999).

Opt. Lett.

Photonics Spectra

D. Bishop, R. Giles, C. Roxlo, “Micromirrors relieve communications bottlenecks,” Photonics Spectra2000, 167–169.

Phys. Rev. Let.

A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Let. 40, 729–732.

Phys. Rev. Lett.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Sci. Am.

M. W. Berns, “Laser scissors and tweezers,” Sci. Am.62–67 (1998).
[CrossRef]

Other

R. M. Moroney, R. M. White, R. T. Howe, “Ultrasonic micromotors: physics and applications,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop, Napa Valley, Calif., 11–14 Feb. 1990. (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 182–187 (1990).

D. A. Koester, R. Mahadevan, A. Shishkoff, K. W. Markus, MUMPS Design Handbook Rev. 4.0, (Cronos Integrated Microsystems, Research Triangle Park, N.C., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Shape of the nine-arm microgear structure. T, W, and L are the gear-arm thickness, width, and length, respectively. θ b , r, and ρ are the laser beam impact parameters; θ is the gear in plane-rotation angle.

Fig. 2
Fig. 2

Simulated x-, y-, and z-axis torque components applied to the microgear for beam incidence angle θ b between 0 and 90 degrees; r = 25 µm and ρ = 0 µm.

Fig. 3
Fig. 3

Parallel torque component and perpendicular torque component present on the gear relative to the central pivot post axis. Parallel torque produces the desired in-plane rotation, and perpendicular torque induces the gear to bind about the post.

Fig. 4
Fig. 4

Lower trace, single-beam parallel torque component versus in-plane gear rotation angle θ between 0 and 360 degrees. The 40-degree repetition results from the gear’s having 40-degree rotational symmetry. Line through this curve is the average torque present on the gear over one revolution. Upper trace, dual counter propagating beams parallel torque component present on the gear. Torque values are smoother over one revolution. Line through this curve is the average torque over one revolution.

Fig. 5
Fig. 5

Top and three-dimensional views of the microgears manufactured for the light-activation experiments.

Fig. 6
Fig. 6

Simplified diagram of the experimental setup used to examine light activation of the microgear structures. Degrees of freedom on components not shown.

Fig. 7
Fig. 7

Rotation rate versus available laser-diode power for a nine-arm microgear structure. Diamonds represent actual measurement, and the line is the linear fit to the data points. The linear response is expected, and through Eq. (9) the stiction and damping factor can be determined.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dPr=hλo nino-rxˆ+mo-mryˆ+no-nrzˆ
dPt=hλo nino-nreltxˆ+mo-nrelmtyˆ+no-nrelntzˆ
F=APIdFi=APINiRavedPr-1-RavedPt,
τ=API dτi=APIridFi.
2θtt2+ bIθtt- τzt-τSI=0.
θt=θo+τz-τStb + Ibτz-τSb-ωo ×exp-btI-1
ωt=τ2-τSb1-expbtI+ωoexp-btI
ατ=bIτz-τSb-ωoexp-btI
ω=τzb - τSb

Metrics