Abstract

Water absorption spectroscopy has been successfully demonstrated as a sensitive and accurate means for in situ determination of temperature and H2O mole fraction in silica (SiO2) particle-forming flames. Frequency modulation of near-infrared emission from a semiconductor diode laser was used to obtain multiple line-shape profiles of H2O rovibrational (ν 1 + ν 3) transitions in the 7170–7185-cm-1 region. Temperature was determined by the relative peak height ratios, and χH2 O was determined by use of the line-shape profiles. Measurements were made in the multiphase regions of silane/hydrogen/oxygen/argon flames to verify the applicability of the diagnostic approach to combustion synthesis systems with high particle loadings. A range of equivalence ratios was studied (ϕ = 0.47–2.15). The results were compared with flames where no silane was present and with adiabatic equilibrium calculations. The spectroscopic results for temperature were in good agreement with thermocouple measurements, and the qualitative trends as a function of the equivalence ratio were in good agreement with the equilibrium predictions. The determinations for water mole fraction were in good agreement with theoretical predictions but were sensitive to the spectroscopic model parameters used to describe collisional broadening. Water absorption spectroscopy has substantial potential as a valuable and practical technology for both research and production combustion synthesis facilities.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Ulrich, “Flame synthesis of fine particles,” Chem. Eng. News 62, 22–29 (1984).
    [CrossRef]
  2. S. E. Pratsinis, “Flame aerosol synthesis of ceramic powders,” Prog. Energy Combust. Sci. 24, 197–219 (1998).
    [CrossRef]
  3. K. Brezinsky, “Gas-phase combustion synthesis of materials,” Proc. Combust. Inst. 26, 1805–1816 (1996).
  4. M. S. Wooldridge, “Gas-phase combustion synthesis of particles,” Prog. Energy Combust. Sci. 24, 63–87 (1998).
    [CrossRef]
  5. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
    [CrossRef] [PubMed]
  6. M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993).
    [CrossRef] [PubMed]
  7. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
    [CrossRef] [PubMed]
  8. V. Nagali, R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997).
    [CrossRef]
  9. D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. J. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
    [CrossRef]
  10. E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, T. P. Parr, “Diode laser sensor system for closed-loop control of a 50-kW incinerator,” in Optical Technology in Fluid, Thermal, and Combustion Flow III, S. S. Cha, J. D. Trolinger, M. Kawahashi, eds., Proc. SPIE3172, 324–330 (1997).
    [CrossRef]
  11. E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode-laser sensor system,” Proc. Combust. Inst. 26, 2851–2858 (1997).
  12. R. K. Hanson, “Absorption spectroscopy in sooting flames using a tunable diode laser,” Appl. Opt. 19, 482–484 (1980).
    [CrossRef] [PubMed]
  13. P. Roth, O. Brandt, S. Von Gersum, “High temperature oxidation of suspended soot particles verified by CO and CO2 measurements,” in Proc. Combust. Inst. 23, 1485–1491 (1990).
  14. P. Roth, O. Brandt, “Shock tube measurements of soot oxidation rates by using a rapid tuning IR laser,” in Seventeenth International Symposium on Shock Waves and Shock Tubes, Y. W. Kim, ed. (American Institute of Physics, New York, 1990), pp. 506–511.
  15. W. L. Flower, A. J. Hurd, “In situ measurement of flame-formed silica particles using dynamic light scattering,” Appl. Opt. 26, 2236–2239 (1987).
    [CrossRef] [PubMed]
  16. HITRAN 96 Database, Digital Product Section, National Climatic Center, National Oceanic and Atmospheric Administration, Federal Building, Asheville, N.C. 28801.
  17. R. R. Gamache, J.-M. Hartmann, L. Rosenmann, “Collisional broadening of water vapor lines. I. A survey of experimental results,” J. Quant. Spectrosc. Radiat. Transfer 52, 481–499 (1994).
    [CrossRef]
  18. V. Nagali, D. F. Davidson, R. K. Hanson, “Measurements of temperature-dependent argon-broadened half-widths of H2O transitions in the 7117 cm-1 region,” J. Quant. Spectrosc. Radiat. Transfer 64, 651–655 (2000).
    [CrossRef]
  19. R. A. Toth, “Extensive measurements of H216O line frequencies and strengths: 5750 to 7965 cm-1,” Appl. Opt. 33, 4851–4867 (1994).
    [CrossRef] [PubMed]
  20. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1945).
  21. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  22. V. Nagali, “Diode laser study of high-pressure water-vapor spectroscopy,” Thermosciences Division Report 117, Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1998).
  23. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
    [CrossRef]
  24. R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
    [CrossRef]
  25. A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
    [CrossRef] [PubMed]
  26. W. C. Reynolds, stanjan Chemical Equilibrium Solver, Version 3.89, Stanford University, Stanford, California (1987).
  27. R. J. Holdsworth, P. A. Martin, D. Raisbeck, J. Rivero, H. E. Sanders, D. Sheel, M. E. Pemble, “Time-resolved in-situ spectroscopic monitoring of the CVD of tin oxide onto a glass substrate,” Chem. Vap. Deposition 7, 39–43 (2001).
    [CrossRef]

2001 (1)

R. J. Holdsworth, P. A. Martin, D. Raisbeck, J. Rivero, H. E. Sanders, D. Sheel, M. E. Pemble, “Time-resolved in-situ spectroscopic monitoring of the CVD of tin oxide onto a glass substrate,” Chem. Vap. Deposition 7, 39–43 (2001).
[CrossRef]

2000 (1)

V. Nagali, D. F. Davidson, R. K. Hanson, “Measurements of temperature-dependent argon-broadened half-widths of H2O transitions in the 7117 cm-1 region,” J. Quant. Spectrosc. Radiat. Transfer 64, 651–655 (2000).
[CrossRef]

1998 (2)

S. E. Pratsinis, “Flame aerosol synthesis of ceramic powders,” Prog. Energy Combust. Sci. 24, 197–219 (1998).
[CrossRef]

M. S. Wooldridge, “Gas-phase combustion synthesis of particles,” Prog. Energy Combust. Sci. 24, 63–87 (1998).
[CrossRef]

1997 (3)

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode-laser sensor system,” Proc. Combust. Inst. 26, 2851–2858 (1997).

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

V. Nagali, R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997).
[CrossRef]

1996 (2)

1994 (3)

1993 (2)

1992 (1)

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

1991 (1)

1990 (1)

P. Roth, O. Brandt, S. Von Gersum, “High temperature oxidation of suspended soot particles verified by CO and CO2 measurements,” in Proc. Combust. Inst. 23, 1485–1491 (1990).

1987 (2)

1984 (1)

G. D. Ulrich, “Flame synthesis of fine particles,” Chem. Eng. News 62, 22–29 (1984).
[CrossRef]

1980 (1)

Arroyo, M. P.

Baer, D. S.

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode-laser sensor system,” Proc. Combust. Inst. 26, 2851–2858 (1997).

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. J. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef]

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, T. P. Parr, “Diode laser sensor system for closed-loop control of a 50-kW incinerator,” in Optical Technology in Fluid, Thermal, and Combustion Flow III, S. S. Cha, J. D. Trolinger, M. Kawahashi, eds., Proc. SPIE3172, 324–330 (1997).
[CrossRef]

Barbe, A.

Benner, D. C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Bertagnolli, K. E.

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Brandt, O.

P. Roth, O. Brandt, S. Von Gersum, “High temperature oxidation of suspended soot particles verified by CO and CO2 measurements,” in Proc. Combust. Inst. 23, 1485–1491 (1990).

P. Roth, O. Brandt, “Shock tube measurements of soot oxidation rates by using a rapid tuning IR laser,” in Seventeenth International Symposium on Shock Waves and Shock Tubes, Y. W. Kim, ed. (American Institute of Physics, New York, 1990), pp. 506–511.

Brezinsky, K.

K. Brezinsky, “Gas-phase combustion synthesis of materials,” Proc. Combust. Inst. 26, 1805–1816 (1996).

Brown, L. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Camy-Peyret, C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Chang, A. Y.

Chou, S. I.

Davidson, D. F.

V. Nagali, D. F. Davidson, R. K. Hanson, “Measurements of temperature-dependent argon-broadened half-widths of H2O transitions in the 7117 cm-1 region,” J. Quant. Spectrosc. Radiat. Transfer 64, 651–655 (2000).
[CrossRef]

A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
[CrossRef] [PubMed]

Devi, V. M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

DiRosa, M. D.

Flaud, J.-M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Flower, W. L.

Furlong, E. R.

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode-laser sensor system,” Proc. Combust. Inst. 26, 2851–2858 (1997).

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, T. P. Parr, “Diode laser sensor system for closed-loop control of a 50-kW incinerator,” in Optical Technology in Fluid, Thermal, and Combustion Flow III, S. S. Cha, J. D. Trolinger, M. Kawahashi, eds., Proc. SPIE3172, 324–330 (1997).
[CrossRef]

Gamache, R. R.

R. R. Gamache, J.-M. Hartmann, L. Rosenmann, “Collisional broadening of water vapor lines. I. A survey of experimental results,” J. Quant. Spectrosc. Radiat. Transfer 52, 481–499 (1994).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Goldman, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Gopaul, N. K. J. M.

Hancock, R. D.

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Hanson, R. K.

V. Nagali, D. F. Davidson, R. K. Hanson, “Measurements of temperature-dependent argon-broadened half-widths of H2O transitions in the 7117 cm-1 region,” J. Quant. Spectrosc. Radiat. Transfer 64, 651–655 (2000).
[CrossRef]

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode-laser sensor system,” Proc. Combust. Inst. 26, 2851–2858 (1997).

V. Nagali, R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. J. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef]

M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993).
[CrossRef] [PubMed]

L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
[CrossRef] [PubMed]

A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
[CrossRef] [PubMed]

R. K. Hanson, “Absorption spectroscopy in sooting flames using a tunable diode laser,” Appl. Opt. 19, 482–484 (1980).
[CrossRef] [PubMed]

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, T. P. Parr, “Diode laser sensor system for closed-loop control of a 50-kW incinerator,” in Optical Technology in Fluid, Thermal, and Combustion Flow III, S. S. Cha, J. D. Trolinger, M. Kawahashi, eds., Proc. SPIE3172, 324–330 (1997).
[CrossRef]

Hartmann, J.-M.

R. R. Gamache, J.-M. Hartmann, L. Rosenmann, “Collisional broadening of water vapor lines. I. A survey of experimental results,” J. Quant. Spectrosc. Radiat. Transfer 52, 481–499 (1994).
[CrossRef]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1945).

Holdsworth, R. J.

R. J. Holdsworth, P. A. Martin, D. Raisbeck, J. Rivero, H. E. Sanders, D. Sheel, M. E. Pemble, “Time-resolved in-situ spectroscopic monitoring of the CVD of tin oxide onto a glass substrate,” Chem. Vap. Deposition 7, 39–43 (2001).
[CrossRef]

Hurd, A. J.

Husson, N.

Lucht, R. P.

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Martin, P. A.

R. J. Holdsworth, P. A. Martin, D. Raisbeck, J. Rivero, H. E. Sanders, D. Sheel, M. E. Pemble, “Time-resolved in-situ spectroscopic monitoring of the CVD of tin oxide onto a glass substrate,” Chem. Vap. Deposition 7, 39–43 (2001).
[CrossRef]

Massie, S. T.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Mihalcea, R. M.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, T. P. Parr, “Diode laser sensor system for closed-loop control of a 50-kW incinerator,” in Optical Technology in Fluid, Thermal, and Combustion Flow III, S. S. Cha, J. D. Trolinger, M. Kawahashi, eds., Proc. SPIE3172, 324–330 (1997).
[CrossRef]

Nagali, V.

V. Nagali, D. F. Davidson, R. K. Hanson, “Measurements of temperature-dependent argon-broadened half-widths of H2O transitions in the 7117 cm-1 region,” J. Quant. Spectrosc. Radiat. Transfer 64, 651–655 (2000).
[CrossRef]

V. Nagali, R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

V. Nagali, “Diode laser study of high-pressure water-vapor spectroscopy,” Thermosciences Division Report 117, Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1998).

Newfield, M. E.

Parr, T. P.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, T. P. Parr, “Diode laser sensor system for closed-loop control of a 50-kW incinerator,” in Optical Technology in Fluid, Thermal, and Combustion Flow III, S. S. Cha, J. D. Trolinger, M. Kawahashi, eds., Proc. SPIE3172, 324–330 (1997).
[CrossRef]

Pemble, M. E.

R. J. Holdsworth, P. A. Martin, D. Raisbeck, J. Rivero, H. E. Sanders, D. Sheel, M. E. Pemble, “Time-resolved in-situ spectroscopic monitoring of the CVD of tin oxide onto a glass substrate,” Chem. Vap. Deposition 7, 39–43 (2001).
[CrossRef]

Perrin, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Philippe, L. C.

Pickett, H. M.

Poynter, R. L.

Pratsinis, S. E.

S. E. Pratsinis, “Flame aerosol synthesis of ceramic powders,” Prog. Energy Combust. Sci. 24, 197–219 (1998).
[CrossRef]

Raisbeck, D.

R. J. Holdsworth, P. A. Martin, D. Raisbeck, J. Rivero, H. E. Sanders, D. Sheel, M. E. Pemble, “Time-resolved in-situ spectroscopic monitoring of the CVD of tin oxide onto a glass substrate,” Chem. Vap. Deposition 7, 39–43 (2001).
[CrossRef]

Reynolds, W. C.

W. C. Reynolds, stanjan Chemical Equilibrium Solver, Version 3.89, Stanford University, Stanford, California (1987).

Rinsland, C. P.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Rivero, J.

R. J. Holdsworth, P. A. Martin, D. Raisbeck, J. Rivero, H. E. Sanders, D. Sheel, M. E. Pemble, “Time-resolved in-situ spectroscopic monitoring of the CVD of tin oxide onto a glass substrate,” Chem. Vap. Deposition 7, 39–43 (2001).
[CrossRef]

Rosenmann, L.

R. R. Gamache, J.-M. Hartmann, L. Rosenmann, “Collisional broadening of water vapor lines. I. A survey of experimental results,” J. Quant. Spectrosc. Radiat. Transfer 52, 481–499 (1994).
[CrossRef]

Roth, P.

P. Roth, O. Brandt, S. Von Gersum, “High temperature oxidation of suspended soot particles verified by CO and CO2 measurements,” in Proc. Combust. Inst. 23, 1485–1491 (1990).

P. Roth, O. Brandt, “Shock tube measurements of soot oxidation rates by using a rapid tuning IR laser,” in Seventeenth International Symposium on Shock Waves and Shock Tubes, Y. W. Kim, ed. (American Institute of Physics, New York, 1990), pp. 506–511.

Rothman, L. S.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Sanders, H. E.

R. J. Holdsworth, P. A. Martin, D. Raisbeck, J. Rivero, H. E. Sanders, D. Sheel, M. E. Pemble, “Time-resolved in-situ spectroscopic monitoring of the CVD of tin oxide onto a glass substrate,” Chem. Vap. Deposition 7, 39–43 (2001).
[CrossRef]

Segall, J.

Sheel, D.

R. J. Holdsworth, P. A. Martin, D. Raisbeck, J. Rivero, H. E. Sanders, D. Sheel, M. E. Pemble, “Time-resolved in-situ spectroscopic monitoring of the CVD of tin oxide onto a glass substrate,” Chem. Vap. Deposition 7, 39–43 (2001).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Tipping, R. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Toth, R. A.

R. A. Toth, “Extensive measurements of H216O line frequencies and strengths: 5750 to 7965 cm-1,” Appl. Opt. 33, 4851–4867 (1994).
[CrossRef] [PubMed]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Ulrich, G. D.

G. D. Ulrich, “Flame synthesis of fine particles,” Chem. Eng. News 62, 22–29 (1984).
[CrossRef]

Von Gersum, S.

P. Roth, O. Brandt, S. Von Gersum, “High temperature oxidation of suspended soot particles verified by CO and CO2 measurements,” in Proc. Combust. Inst. 23, 1485–1491 (1990).

Webber, M. E.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, T. P. Parr, “Diode laser sensor system for closed-loop control of a 50-kW incinerator,” in Optical Technology in Fluid, Thermal, and Combustion Flow III, S. S. Cha, J. D. Trolinger, M. Kawahashi, eds., Proc. SPIE3172, 324–330 (1997).
[CrossRef]

Wooldridge, M. S.

M. S. Wooldridge, “Gas-phase combustion synthesis of particles,” Prog. Energy Combust. Sci. 24, 63–87 (1998).
[CrossRef]

Appl. Opt. (9)

W. L. Flower, A. J. Hurd, “In situ measurement of flame-formed silica particles using dynamic light scattering,” Appl. Opt. 26, 2236–2239 (1987).
[CrossRef] [PubMed]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
[CrossRef] [PubMed]

L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
[CrossRef] [PubMed]

M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993).
[CrossRef] [PubMed]

R. A. Toth, “Extensive measurements of H216O line frequencies and strengths: 5750 to 7965 cm-1,” Appl. Opt. 33, 4851–4867 (1994).
[CrossRef] [PubMed]

V. Nagali, R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

R. K. Hanson, “Absorption spectroscopy in sooting flames using a tunable diode laser,” Appl. Opt. 19, 482–484 (1980).
[CrossRef] [PubMed]

Chem. Eng. News (1)

G. D. Ulrich, “Flame synthesis of fine particles,” Chem. Eng. News 62, 22–29 (1984).
[CrossRef]

Chem. Vap. Deposition (1)

R. J. Holdsworth, P. A. Martin, D. Raisbeck, J. Rivero, H. E. Sanders, D. Sheel, M. E. Pemble, “Time-resolved in-situ spectroscopic monitoring of the CVD of tin oxide onto a glass substrate,” Chem. Vap. Deposition 7, 39–43 (2001).
[CrossRef]

Combust. Flame (1)

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

R. R. Gamache, J.-M. Hartmann, L. Rosenmann, “Collisional broadening of water vapor lines. I. A survey of experimental results,” J. Quant. Spectrosc. Radiat. Transfer 52, 481–499 (1994).
[CrossRef]

V. Nagali, D. F. Davidson, R. K. Hanson, “Measurements of temperature-dependent argon-broadened half-widths of H2O transitions in the 7117 cm-1 region,” J. Quant. Spectrosc. Radiat. Transfer 64, 651–655 (2000).
[CrossRef]

Opt. Lett. (1)

Proc. Combust. Inst. (3)

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode-laser sensor system,” Proc. Combust. Inst. 26, 2851–2858 (1997).

P. Roth, O. Brandt, S. Von Gersum, “High temperature oxidation of suspended soot particles verified by CO and CO2 measurements,” in Proc. Combust. Inst. 23, 1485–1491 (1990).

K. Brezinsky, “Gas-phase combustion synthesis of materials,” Proc. Combust. Inst. 26, 1805–1816 (1996).

Prog. Energy Combust. Sci. (2)

M. S. Wooldridge, “Gas-phase combustion synthesis of particles,” Prog. Energy Combust. Sci. 24, 63–87 (1998).
[CrossRef]

S. E. Pratsinis, “Flame aerosol synthesis of ceramic powders,” Prog. Energy Combust. Sci. 24, 197–219 (1998).
[CrossRef]

Other (6)

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, T. P. Parr, “Diode laser sensor system for closed-loop control of a 50-kW incinerator,” in Optical Technology in Fluid, Thermal, and Combustion Flow III, S. S. Cha, J. D. Trolinger, M. Kawahashi, eds., Proc. SPIE3172, 324–330 (1997).
[CrossRef]

P. Roth, O. Brandt, “Shock tube measurements of soot oxidation rates by using a rapid tuning IR laser,” in Seventeenth International Symposium on Shock Waves and Shock Tubes, Y. W. Kim, ed. (American Institute of Physics, New York, 1990), pp. 506–511.

G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1945).

V. Nagali, “Diode laser study of high-pressure water-vapor spectroscopy,” Thermosciences Division Report 117, Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1998).

HITRAN 96 Database, Digital Product Section, National Climatic Center, National Oceanic and Atmospheric Administration, Federal Building, Asheville, N.C. 28801.

W. C. Reynolds, stanjan Chemical Equilibrium Solver, Version 3.89, Stanford University, Stanford, California (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Calculated H2O absorption spectra as a function of temperature in the 7170–7185-cm-1 (1.3918–1.3947-µm) region, P = 1 atm, χH2 O = 15%.

Fig. 2
Fig. 2

Calculated ratios of the H2O absorption peak heights R i [defined in Eq. (10)] for the five primary spectral features examined in the study (P = 1 atm, χH2 O = 4%).

Fig. 3
Fig. 3

Schematic of the MEDB used in the study. o.d., outside diameter.

Fig. 4
Fig. 4

Experimental schematic of the H2O absorption diagnostic.

Fig. 5
Fig. 5

Schematic indicating zones used in the data analysis.

Fig. 6
Fig. 6

Typical absorption data and model results for a non-particle-forming H2/O2/Ar flame, ϕ = 0.43, taken at a height of 30 mm above the surface of the burner. The residual (the difference between the experimental data and the best-fit model results) was normalized by the peak height of the ν 1 + ν 3 (30,3) transition, λ = 7181.156 cm-1.

Fig. 7
Fig. 7

Typical absorption data and model results for a particle-forming SiH4/H2/O2/Ar flame, ϕ = 0.47, taken at a height of 30 mm above the surface of the burner. The residual (the difference between the experimental data and the best-fit model results) was normalized by the peak height of the ν 1 + ν 3 (30,3) transition, λ = 7181.156 cm-1.

Fig. 8
Fig. 8

Temperature results as a function of equivalence ratio, z = 15 mm, for both particle-forming (SiH4 + H2) and non-particle-forming (H2) flames. Thermocouple data and equilibrium predictions for corresponding adiabatic flame conditions are also shown. Error bars denote the uncertainties in the flow measurement (horizontal error bars) and in the spectroscopic data (vertical error bars).

Fig. 9
Fig. 9

Results for χH2 O as a function of equivalence ratio, z = 15 mm, for both particle-forming (SiH4 + H2) and non-particle-forming (H2) flames. Equilibrium predictions for corresponding adiabatic flame conditions are also shown. Vertical error bars denote the uncertainties in the spectroscopic data.

Fig. 10
Fig. 10

Temperature results as a function of equivalence ratio, z = 15 mm and z = 30 mm, for both particle-forming (SiH4 + H2) and non-particle-forming (H2) flames. Error bars denote the uncertainties in the flow measurement (horizontal error bars) and in the spectroscopic data (vertical error bars).

Fig. 11
Fig. 11

Results for χH2 O as a function of equivalence ratio, z = 15 mm and z = 30 mm, for both particle-forming (SiH4 + H2) and non-particle-forming (H2) flames. Vertical error bars denote the uncertainties in the spectroscopic data.

Tables (4)

Tables Icon

Table 1 Data Used in the Spectroscopic Model for Major and Minor H2O Absorption Features (Major Features Are in Bold Type)

Tables Icon

Table 2 Reactant Purities

Tables Icon

Table 3 Laser Operating Conditions

Tables Icon

Table 4 Reactant Conditions (in Liters per Minute)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

τν=Iν/I0=1-ΔI/I0=exp-STϕν, TPχH2OL.
ϕν, T=2/ΔνDopplerln 2/π1/2Va, w,
w=2ln 21/2ν-ν0/ΔνDoppler,
a=ln 21/2Δνcollision/ΔνDoppler.
ΔνDoppler=3.581×10-7ν0T/M,
Δνcollision= Δνi, refPiT/Tref-ni:H2O.
ΔνAr, ref=0.45Δνair, ref.
ST=STrefTref/TQTref/QTexp-hcE/k1/T-1/Tref1-exp-hcν0/kT/1-exp-hcν0/kTref,
QT=0.5π/ABCkT/hc1.51-exp-hcν1/kT1-exp-hcν2/kT1-exp-hcν3/kT,
RiT, χH2O=lnIv0/I0transitionilnIv0/I0ν1+ν376,1=STφν0, TtransitioniSTφν0, Tν1+ν376,1.

Metrics