Abstract

We investigate the space-bandwidth product of a ladar system incorporating an upconversion receiver. After illuminating a target with an eye-safe beam, we direct the return into a piece of periodically poled LiNbO3 where it is upconverted into the visible spectrum and detected with a CCD camera. The theoretical and experimental transfer functions are then found. We show that the angular acceptance of the upconversion process severely limits the receiver field of regard for macroscopic coupling optics. This limitation is overcome with a pair of microlens arrays, and a 43% increase in the system’s measured space-bandwidth product is demonstrated.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Dixon, “Periodically poled lithium niobate shines in the IR,” Laser Focus World 33, 105–111 (1997).
  2. M. J. Missey, V. Dominic, P. E. Powers, “Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators,” Opt. Lett. 24, 1227–1229 (1999).
    [CrossRef]
  3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, “Quasi-phase-matched optical parametric oscillators using bulk periodically poled lithium niobate,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  4. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, “Multigrating quasi-phase-matched optical parametric oscillators in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
    [CrossRef] [PubMed]
  5. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  6. M. S. Salisbury, P. F. McManamon, B. D. Duncan, “Sensitivity improvement of a 1 µm ladar system incorporating an optical fiber preamplifier,” Opt. Eng. 32, 2671–2680 (1993).
    [CrossRef]
  7. S. Ma, D. Guthals, P. Hu, B. Campbell, “Atmospheric-turbulence compensation with self-referenced binary holographic interferometry,” J. Opt. Soc. Am. A 11, 428–433 (1994).
    [CrossRef]
  8. E. A. Watson, G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
    [CrossRef]
  9. P. Gunter, Nonlinear Optical Effects and Materials (Springer-Verlag, Berlin, 2000).
    [CrossRef]
  10. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  11. A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1992).
  12. J. H. Shapiro, “Target-reflectivity theory for coherent laser radars,” Appl. Opt. 21, 3398–3408 (1982).
    [CrossRef] [PubMed]
  13. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  14. R. A. Andrews, “IR image parametric upconversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
    [CrossRef]
  15. A. H. Firester, “Image upconversion: part III,” J. Appl. Phys. 41, 703–709 (1970).
    [CrossRef]
  16. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978).
  17. J. A. Overbeck, M. B. Mark, S. H. McCracken, P. F. McManamon, B. D. Duncan, “Coherent versus incoherent ladar detection at 2.09 mm,” Opt. Eng. 32, 2681–2689 (1993).
    [CrossRef]
  18. M. Born, E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, New York, 1980).
  19. Handbook of Mathematical, Scientific, and Engineering Formulas, Tables, Functions, Graphs, and Transforms (Research and Education Association, Piscataway, N.J., 1992).
  20. F. G. Stremler, Introduction to Communication Systems, 3rd ed. (Addison-Wesley, Reading, Mass., 1992).
  21. M. S. Currin, R. G. Driggers, “Field-of-view overlap effects in a multiaperture vision system with apposition eyelets,” Appl. Opt. 36, 5775–5780 (1997).
    [CrossRef] [PubMed]
  22. J. E. Harvey, A. Kotha, R. L. Phillips, “Image characteristics in applications utilizing dilute subaperture arrays,” Appl. Opt. 34, 2983–2992 (1995).
    [CrossRef] [PubMed]

1999 (1)

1997 (3)

1996 (1)

1995 (2)

1994 (1)

1993 (2)

M. S. Salisbury, P. F. McManamon, B. D. Duncan, “Sensitivity improvement of a 1 µm ladar system incorporating an optical fiber preamplifier,” Opt. Eng. 32, 2671–2680 (1993).
[CrossRef]

J. A. Overbeck, M. B. Mark, S. H. McCracken, P. F. McManamon, B. D. Duncan, “Coherent versus incoherent ladar detection at 2.09 mm,” Opt. Eng. 32, 2681–2689 (1993).
[CrossRef]

1990 (1)

E. A. Watson, G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
[CrossRef]

1982 (1)

1970 (2)

R. A. Andrews, “IR image parametric upconversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
[CrossRef]

A. H. Firester, “Image upconversion: part III,” J. Appl. Phys. 41, 703–709 (1970).
[CrossRef]

Andrews, R. A.

R. A. Andrews, “IR image parametric upconversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, New York, 1980).

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

Byer, R. L.

Campbell, B.

Currin, M. S.

Dixon, G. J.

G. J. Dixon, “Periodically poled lithium niobate shines in the IR,” Laser Focus World 33, 105–111 (1997).

Dominic, V.

Driggers, R. G.

Duncan, B. D.

J. A. Overbeck, M. B. Mark, S. H. McCracken, P. F. McManamon, B. D. Duncan, “Coherent versus incoherent ladar detection at 2.09 mm,” Opt. Eng. 32, 2681–2689 (1993).
[CrossRef]

M. S. Salisbury, P. F. McManamon, B. D. Duncan, “Sensitivity improvement of a 1 µm ladar system incorporating an optical fiber preamplifier,” Opt. Eng. 32, 2671–2680 (1993).
[CrossRef]

Eckardt, R. C.

Fejer, M. M.

Firester, A. H.

A. H. Firester, “Image upconversion: part III,” J. Appl. Phys. 41, 703–709 (1970).
[CrossRef]

Gaskill, J. D.

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Gunter, P.

P. Gunter, Nonlinear Optical Effects and Materials (Springer-Verlag, Berlin, 2000).
[CrossRef]

Guthals, D.

Harvey, J. E.

Hu, P.

Jelalian, A. V.

A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1992).

Jundt, D. H.

Kotha, A.

Ma, S.

Mark, M. B.

J. A. Overbeck, M. B. Mark, S. H. McCracken, P. F. McManamon, B. D. Duncan, “Coherent versus incoherent ladar detection at 2.09 mm,” Opt. Eng. 32, 2681–2689 (1993).
[CrossRef]

McCracken, S. H.

J. A. Overbeck, M. B. Mark, S. H. McCracken, P. F. McManamon, B. D. Duncan, “Coherent versus incoherent ladar detection at 2.09 mm,” Opt. Eng. 32, 2681–2689 (1993).
[CrossRef]

McManamon, P. F.

J. A. Overbeck, M. B. Mark, S. H. McCracken, P. F. McManamon, B. D. Duncan, “Coherent versus incoherent ladar detection at 2.09 mm,” Opt. Eng. 32, 2681–2689 (1993).
[CrossRef]

M. S. Salisbury, P. F. McManamon, B. D. Duncan, “Sensitivity improvement of a 1 µm ladar system incorporating an optical fiber preamplifier,” Opt. Eng. 32, 2671–2680 (1993).
[CrossRef]

Missey, M. J.

Morris, G. M.

E. A. Watson, G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
[CrossRef]

Myers, L. E.

Overbeck, J. A.

J. A. Overbeck, M. B. Mark, S. H. McCracken, P. F. McManamon, B. D. Duncan, “Coherent versus incoherent ladar detection at 2.09 mm,” Opt. Eng. 32, 2681–2689 (1993).
[CrossRef]

Phillips, R. L.

Powers, P. E.

Salisbury, M. S.

M. S. Salisbury, P. F. McManamon, B. D. Duncan, “Sensitivity improvement of a 1 µm ladar system incorporating an optical fiber preamplifier,” Opt. Eng. 32, 2671–2680 (1993).
[CrossRef]

Shapiro, J. H.

Stremler, F. G.

F. G. Stremler, Introduction to Communication Systems, 3rd ed. (Addison-Wesley, Reading, Mass., 1992).

Watson, E. A.

E. A. Watson, G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, New York, 1980).

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

R. A. Andrews, “IR image parametric upconversion,” IEEE J. Quantum Electron. 6(1), 68–80 (1970).
[CrossRef]

J. Appl. Phys. (2)

A. H. Firester, “Image upconversion: part III,” J. Appl. Phys. 41, 703–709 (1970).
[CrossRef]

E. A. Watson, G. M. Morris, “Comparison of infrared upconversion methods for photon-limited imaging,” J. Appl. Phys. 67, 6075–6084 (1990).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Focus World (1)

G. J. Dixon, “Periodically poled lithium niobate shines in the IR,” Laser Focus World 33, 105–111 (1997).

Opt. Eng. (2)

M. S. Salisbury, P. F. McManamon, B. D. Duncan, “Sensitivity improvement of a 1 µm ladar system incorporating an optical fiber preamplifier,” Opt. Eng. 32, 2671–2680 (1993).
[CrossRef]

J. A. Overbeck, M. B. Mark, S. H. McCracken, P. F. McManamon, B. D. Duncan, “Coherent versus incoherent ladar detection at 2.09 mm,” Opt. Eng. 32, 2681–2689 (1993).
[CrossRef]

Opt. Lett. (3)

Other (8)

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

P. Gunter, Nonlinear Optical Effects and Materials (Springer-Verlag, Berlin, 2000).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

A. V. Jelalian, Laser Radar Systems (Artech House, Boston, Mass., 1992).

M. Born, E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, New York, 1980).

Handbook of Mathematical, Scientific, and Engineering Formulas, Tables, Functions, Graphs, and Transforms (Research and Education Association, Piscataway, N.J., 1992).

F. G. Stremler, Introduction to Communication Systems, 3rd ed. (Addison-Wesley, Reading, Mass., 1992).

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Modified ladar receiver with a SFG crystal to upconvert the frequency of the target return to the visible spectrum. SPF, short-pass filter.

Fig. 2
Fig. 2

Wave-vector diagram for phase matching inside a PPLN poled for upconversion.

Fig. 3
Fig. 3

Angular acceptance of a 25-mm PPLN upconversion crystal.

Fig. 4
Fig. 4

Experimental setup for the OPO transmitter and the upconversion receiver. LPF, long-pass filter; DM, dichroic mirror; GF, green filter; HWP, half-wave plate; VA, variable attenuator; FI, Faraday isolator.

Fig. 5
Fig. 5

Experimental and theoretical FOV for the upconversion receiver.

Fig. 6
Fig. 6

Normalized cross sections of (a) the upconverted image data gathered during the characterization of the macroscopic transfer function and (b) its Fourier transform. Here the profile is shown for the 1-cycle/mm grating.

Fig. 7
Fig. 7

Experimental transfer function results for the Kodak MegaPlus camera. Here the experimental results are fitted with a second-order polynomial.

Fig. 8
Fig. 8

Macroscopic transfer function results. Here the transfer function cuts off at an object frequency of approximately 4 cycles/mm.

Fig. 9
Fig. 9

Trade-off between the maximum spatial frequency passed through the upconversion system and the field of regard in the intermediate image plane. The numerical aperture of the coupling optic and the crystal are assumed to be matched.

Fig. 10
Fig. 10

Illustration of the increased receiver field of regard with a MLA receiver.

Fig. 11
Fig. 11

Sampling of the sinusoidal target by three elements of the MLA. This graph illustrates the portion of the original sinusoidal target intercepted by the MLA over 1 mm when the target modulation frequency is (a) 2 and (b) 0.5 cycles/mm.

Fig. 12
Fig. 12

Experimental field of regard for the MLA receiver. The theoretical field of regard for a single microlens element is shown for comparison.

Fig. 13
Fig. 13

Normalized upconverted image through the MLA (a) without the sinusoidal target in the path of the signal beam, (b) with the 1-cycle/mm grating in place, (c) the results of digital filtering applied to the data in (b).

Fig. 14
Fig. 14

Angular demagnification of the upconverted image through the MLA.

Fig. 15
Fig. 15

Theoretical simulation of the optical transfer function for the MLA receiver and the corresponding experimental data.

Tables (1)

Tables Icon

Table 1 Experimental SFG Crystal Parameters for the Image Upconversion Receiver

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

ωsum=ωp+ωs.
Δk=kp+ks+kG-ksum,
Δkz=2πneλp, Tcλp+1Λg+neλs, Tcλscosθs-neλsum, Tcλsumcosϕ,
neλs, Tcλssinθs=neλsum, Tcλsumsinϕ,
ηup=Lc2κ2sinc2gLc,
g=κ2+Δk241/2=4π2|χeff2|2Ipλsλsumnsnsumnpcεo+Δk241/2,
Ip=2Ppπwp2=2.84×4PpnpLcλp.
χeff2=2π χzzz2=2π25 pm/V.
Uox=1|M| txt|M|Gsxt|M|Ax=txGsxAx,
Ax=rectxfcθso.
Usumx2=Ũox2λsfcUpx2Pcx2,
Pcx2=rectx2wc.
Uix=Uo-λsxλsumŨpxλsumfcP˜cxλsumfc =UoxmsŨpxλsumfcP˜cxλsumfc,
hoptx=ŨpxλsumfcP˜cxλsumfc.
Hoptρ=PcρλsumfcUpρλsumfc,
Idetx=|Uix|2hdetx=Uoxmshoptx2hdetx.
Ĩdetx=|Uix|2Hdetρ,
Itx=121+Mt cos2πfox,
tx=Itx1/2=121+Mt cos2πfox1/2.
tx121+Mt2cos2πfox.
Ũiρms2Hoptρ2G˜smsρÃmsρδρ+Mt4 δρ±ρo,
Ũiρms2G˜s0Ã02Hopt0δρ+Mt4 Hopt±ρoδρ±ρo.
Idetx|Gs0A0|221+MtHoptρocos2πρoxhdetx.
Ĩdetρ12 |Gs0A0|2Hdet0δρ+MtHoptρoHdetρo2 δρ±ρo.
Hoptρo=MoutMtHdetρo.
Hdetρ=1-0.0579ρ+0.000812ρ2.
AMLAx=rectxDMLAn=0N-1/2 δx±nDMLA,
Upx|n=Ap exp-πnDMLAwp2AMLAx|n=Ap|nAMLAx|n,
HMLAx2=DMLAn=0N-1/2 Ap|n×sincDMLAx2±nDMLAλpfMLA.
HMLAρ|n=Ap|nDMLAsincDMLAλsumρλp.
Ũiρ|nms2Ã02HMLA0|nδρ+Mt4 HMLAρo|nδρ±ρo.
Idetx|nrectx-nDMLADMLAms1+MtHMLAρo|n×cos2πρoxhdetx.
n=0N-1/2 HMLAρo|n=1MtHdetρon=0N-1/2 Ĩdetρo|n,
HMLAρo|array=Mout|arrayMtHdetρo.

Metrics