Abstract

We present a low-temperature-grown GaAs device that combines the features of mode locking and photoconductive switching. The mode-locking mechanism is based on intensity-dependent defocusing. Additionally, the generated carriers produce an electrical signal in the biased switch geometry. This technique allows for simultaneous generation of synchronized optical and electrical pulse trains with a single device.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers, IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [CrossRef]
  2. M. Leitner, P. Glas, T. Sandrock, M. Wrage, G. Apostolopoulos, A. Riedel, H. Kostial, K.-J. Friedland, L. DäweritzSelf-starting mode locking of a Nd:glass fiber laser by use of the third-order nonlinearity of low-temperature-grown GaAs,” Opt. Lett. 24, 1567–1569 (1999).
    [CrossRef]
  3. D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
    [CrossRef]
  4. H. S. Loka, S. D. Benjamin, P. W. E. Smith, “Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices,” IEEE J. Quantum Electron. 34, 1426–1437 (1998).
    [CrossRef]
  5. M. Tani, K.-S. Lee, X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µm probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
    [CrossRef]
  6. S. Y. Chou, Y. Liu, W. Khalil, T. Y. Hsiang, S. Alexandrou, “Ultrafast nanoscale metal-semiconductor-metal photodetectors on bulk and low-temperature grown GaAs,” Appl. Phys. Lett. 61, 819–821 (1992).
    [CrossRef]
  7. C. Ludwig, J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996).
    [CrossRef]
  8. J. Herfort, G. Apostolopoulos, K.-J. Friedland, H. Kostial, W. Ulrici, L. Däweritz, M. Leitner, P. Glas, K. H. Ploog, “In situ controlled growth of low-temperature GaAs and its application for mode locking devices,” Jpn. J. Appl. Phys. 39, 2452–2456 (2000).
    [CrossRef]
  9. D. C. Look, G. D. Robinson, J. R. Sizelove, C. E. Stutz, “Electrical properties of molecular beam epitaxial GaAs grown at 300–450 °C,” J. Electron. Mater. 22, 1425–1428 (1993).
    [CrossRef]
  10. D. C. Look, Z.-Q. Fang, J. W. Look, J. R. Sizelove, “Hopping conduction in molecular beam epitaxial GaAs grown at very low temperatures,” J. Electrochem. Soc. 141, 747–750 (1994).
    [CrossRef]
  11. K. Tamura, L. E. Nelson, H. A. Haus, E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
    [CrossRef]
  12. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992).
    [CrossRef]
  13. M. Leitner, P. Glas, M. Wrage, T. Sandrock, H. Legall, A. Heuer, G. Apostolopoulos, J. Herfort, L. Däweritz, “Mode locked Nd:glass fiber laser using intensity dependent defocusing by low-temperature-grown GaAs” in Conference on Lasers and Electro-Optics Europe (Institute of Electrical and Electronics Engineers, New York, 2000), paper CMB4.

2000 (2)

M. Tani, K.-S. Lee, X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µm probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[CrossRef]

J. Herfort, G. Apostolopoulos, K.-J. Friedland, H. Kostial, W. Ulrici, L. Däweritz, M. Leitner, P. Glas, K. H. Ploog, “In situ controlled growth of low-temperature GaAs and its application for mode locking devices,” Jpn. J. Appl. Phys. 39, 2452–2456 (2000).
[CrossRef]

1999 (1)

1998 (1)

H. S. Loka, S. D. Benjamin, P. W. E. Smith, “Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices,” IEEE J. Quantum Electron. 34, 1426–1437 (1998).
[CrossRef]

1996 (2)

C. Ludwig, J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers, IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

1994 (2)

D. C. Look, Z.-Q. Fang, J. W. Look, J. R. Sizelove, “Hopping conduction in molecular beam epitaxial GaAs grown at very low temperatures,” J. Electrochem. Soc. 141, 747–750 (1994).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus, E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
[CrossRef]

1993 (1)

D. C. Look, G. D. Robinson, J. R. Sizelove, C. E. Stutz, “Electrical properties of molecular beam epitaxial GaAs grown at 300–450 °C,” J. Electron. Mater. 22, 1425–1428 (1993).
[CrossRef]

1992 (2)

S. Y. Chou, Y. Liu, W. Khalil, T. Y. Hsiang, S. Alexandrou, “Ultrafast nanoscale metal-semiconductor-metal photodetectors on bulk and low-temperature grown GaAs,” Appl. Phys. Lett. 61, 819–821 (1992).
[CrossRef]

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992).
[CrossRef]

1975 (1)

D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
[CrossRef]

Alexandrou, S.

S. Y. Chou, Y. Liu, W. Khalil, T. Y. Hsiang, S. Alexandrou, “Ultrafast nanoscale metal-semiconductor-metal photodetectors on bulk and low-temperature grown GaAs,” Appl. Phys. Lett. 61, 819–821 (1992).
[CrossRef]

Apostolopoulos, G.

J. Herfort, G. Apostolopoulos, K.-J. Friedland, H. Kostial, W. Ulrici, L. Däweritz, M. Leitner, P. Glas, K. H. Ploog, “In situ controlled growth of low-temperature GaAs and its application for mode locking devices,” Jpn. J. Appl. Phys. 39, 2452–2456 (2000).
[CrossRef]

M. Leitner, P. Glas, T. Sandrock, M. Wrage, G. Apostolopoulos, A. Riedel, H. Kostial, K.-J. Friedland, L. DäweritzSelf-starting mode locking of a Nd:glass fiber laser by use of the third-order nonlinearity of low-temperature-grown GaAs,” Opt. Lett. 24, 1567–1569 (1999).
[CrossRef]

M. Leitner, P. Glas, M. Wrage, T. Sandrock, H. Legall, A. Heuer, G. Apostolopoulos, J. Herfort, L. Däweritz, “Mode locked Nd:glass fiber laser using intensity dependent defocusing by low-temperature-grown GaAs” in Conference on Lasers and Electro-Optics Europe (Institute of Electrical and Electronics Engineers, New York, 2000), paper CMB4.

aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers, IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Auston, D. H.

D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
[CrossRef]

Benjamin, S. D.

H. S. Loka, S. D. Benjamin, P. W. E. Smith, “Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices,” IEEE J. Quantum Electron. 34, 1426–1437 (1998).
[CrossRef]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers, IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Chou, S. Y.

S. Y. Chou, Y. Liu, W. Khalil, T. Y. Hsiang, S. Alexandrou, “Ultrafast nanoscale metal-semiconductor-metal photodetectors on bulk and low-temperature grown GaAs,” Appl. Phys. Lett. 61, 819–821 (1992).
[CrossRef]

Däweritz, L.

J. Herfort, G. Apostolopoulos, K.-J. Friedland, H. Kostial, W. Ulrici, L. Däweritz, M. Leitner, P. Glas, K. H. Ploog, “In situ controlled growth of low-temperature GaAs and its application for mode locking devices,” Jpn. J. Appl. Phys. 39, 2452–2456 (2000).
[CrossRef]

M. Leitner, P. Glas, T. Sandrock, M. Wrage, G. Apostolopoulos, A. Riedel, H. Kostial, K.-J. Friedland, L. DäweritzSelf-starting mode locking of a Nd:glass fiber laser by use of the third-order nonlinearity of low-temperature-grown GaAs,” Opt. Lett. 24, 1567–1569 (1999).
[CrossRef]

M. Leitner, P. Glas, M. Wrage, T. Sandrock, H. Legall, A. Heuer, G. Apostolopoulos, J. Herfort, L. Däweritz, “Mode locked Nd:glass fiber laser using intensity dependent defocusing by low-temperature-grown GaAs” in Conference on Lasers and Electro-Optics Europe (Institute of Electrical and Electronics Engineers, New York, 2000), paper CMB4.

Fang, Z.-Q.

D. C. Look, Z.-Q. Fang, J. W. Look, J. R. Sizelove, “Hopping conduction in molecular beam epitaxial GaAs grown at very low temperatures,” J. Electrochem. Soc. 141, 747–750 (1994).
[CrossRef]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers, IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Friedland, K.-J.

J. Herfort, G. Apostolopoulos, K.-J. Friedland, H. Kostial, W. Ulrici, L. Däweritz, M. Leitner, P. Glas, K. H. Ploog, “In situ controlled growth of low-temperature GaAs and its application for mode locking devices,” Jpn. J. Appl. Phys. 39, 2452–2456 (2000).
[CrossRef]

M. Leitner, P. Glas, T. Sandrock, M. Wrage, G. Apostolopoulos, A. Riedel, H. Kostial, K.-J. Friedland, L. DäweritzSelf-starting mode locking of a Nd:glass fiber laser by use of the third-order nonlinearity of low-temperature-grown GaAs,” Opt. Lett. 24, 1567–1569 (1999).
[CrossRef]

Glas, P.

J. Herfort, G. Apostolopoulos, K.-J. Friedland, H. Kostial, W. Ulrici, L. Däweritz, M. Leitner, P. Glas, K. H. Ploog, “In situ controlled growth of low-temperature GaAs and its application for mode locking devices,” Jpn. J. Appl. Phys. 39, 2452–2456 (2000).
[CrossRef]

M. Leitner, P. Glas, T. Sandrock, M. Wrage, G. Apostolopoulos, A. Riedel, H. Kostial, K.-J. Friedland, L. DäweritzSelf-starting mode locking of a Nd:glass fiber laser by use of the third-order nonlinearity of low-temperature-grown GaAs,” Opt. Lett. 24, 1567–1569 (1999).
[CrossRef]

M. Leitner, P. Glas, M. Wrage, T. Sandrock, H. Legall, A. Heuer, G. Apostolopoulos, J. Herfort, L. Däweritz, “Mode locked Nd:glass fiber laser using intensity dependent defocusing by low-temperature-grown GaAs” in Conference on Lasers and Electro-Optics Europe (Institute of Electrical and Electronics Engineers, New York, 2000), paper CMB4.

Hagan, D. J.

Haus, H. A.

K. Tamura, L. E. Nelson, H. A. Haus, E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
[CrossRef]

Herfort, J.

J. Herfort, G. Apostolopoulos, K.-J. Friedland, H. Kostial, W. Ulrici, L. Däweritz, M. Leitner, P. Glas, K. H. Ploog, “In situ controlled growth of low-temperature GaAs and its application for mode locking devices,” Jpn. J. Appl. Phys. 39, 2452–2456 (2000).
[CrossRef]

M. Leitner, P. Glas, M. Wrage, T. Sandrock, H. Legall, A. Heuer, G. Apostolopoulos, J. Herfort, L. Däweritz, “Mode locked Nd:glass fiber laser using intensity dependent defocusing by low-temperature-grown GaAs” in Conference on Lasers and Electro-Optics Europe (Institute of Electrical and Electronics Engineers, New York, 2000), paper CMB4.

Heuer, A.

M. Leitner, P. Glas, M. Wrage, T. Sandrock, H. Legall, A. Heuer, G. Apostolopoulos, J. Herfort, L. Däweritz, “Mode locked Nd:glass fiber laser using intensity dependent defocusing by low-temperature-grown GaAs” in Conference on Lasers and Electro-Optics Europe (Institute of Electrical and Electronics Engineers, New York, 2000), paper CMB4.

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers, IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Hsiang, T. Y.

S. Y. Chou, Y. Liu, W. Khalil, T. Y. Hsiang, S. Alexandrou, “Ultrafast nanoscale metal-semiconductor-metal photodetectors on bulk and low-temperature grown GaAs,” Appl. Phys. Lett. 61, 819–821 (1992).
[CrossRef]

Ippen, E. P.

K. Tamura, L. E. Nelson, H. A. Haus, E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
[CrossRef]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers, IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers, IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Keller, U.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers, IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Khalil, W.

S. Y. Chou, Y. Liu, W. Khalil, T. Y. Hsiang, S. Alexandrou, “Ultrafast nanoscale metal-semiconductor-metal photodetectors on bulk and low-temperature grown GaAs,” Appl. Phys. Lett. 61, 819–821 (1992).
[CrossRef]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers, IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kostial, H.

J. Herfort, G. Apostolopoulos, K.-J. Friedland, H. Kostial, W. Ulrici, L. Däweritz, M. Leitner, P. Glas, K. H. Ploog, “In situ controlled growth of low-temperature GaAs and its application for mode locking devices,” Jpn. J. Appl. Phys. 39, 2452–2456 (2000).
[CrossRef]

M. Leitner, P. Glas, T. Sandrock, M. Wrage, G. Apostolopoulos, A. Riedel, H. Kostial, K.-J. Friedland, L. DäweritzSelf-starting mode locking of a Nd:glass fiber laser by use of the third-order nonlinearity of low-temperature-grown GaAs,” Opt. Lett. 24, 1567–1569 (1999).
[CrossRef]

Kuhl, J.

C. Ludwig, J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996).
[CrossRef]

Lee, K.-S.

M. Tani, K.-S. Lee, X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µm probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[CrossRef]

Legall, H.

M. Leitner, P. Glas, M. Wrage, T. Sandrock, H. Legall, A. Heuer, G. Apostolopoulos, J. Herfort, L. Däweritz, “Mode locked Nd:glass fiber laser using intensity dependent defocusing by low-temperature-grown GaAs” in Conference on Lasers and Electro-Optics Europe (Institute of Electrical and Electronics Engineers, New York, 2000), paper CMB4.

Leitner, M.

J. Herfort, G. Apostolopoulos, K.-J. Friedland, H. Kostial, W. Ulrici, L. Däweritz, M. Leitner, P. Glas, K. H. Ploog, “In situ controlled growth of low-temperature GaAs and its application for mode locking devices,” Jpn. J. Appl. Phys. 39, 2452–2456 (2000).
[CrossRef]

M. Leitner, P. Glas, T. Sandrock, M. Wrage, G. Apostolopoulos, A. Riedel, H. Kostial, K.-J. Friedland, L. DäweritzSelf-starting mode locking of a Nd:glass fiber laser by use of the third-order nonlinearity of low-temperature-grown GaAs,” Opt. Lett. 24, 1567–1569 (1999).
[CrossRef]

M. Leitner, P. Glas, M. Wrage, T. Sandrock, H. Legall, A. Heuer, G. Apostolopoulos, J. Herfort, L. Däweritz, “Mode locked Nd:glass fiber laser using intensity dependent defocusing by low-temperature-grown GaAs” in Conference on Lasers and Electro-Optics Europe (Institute of Electrical and Electronics Engineers, New York, 2000), paper CMB4.

Liu, Y.

S. Y. Chou, Y. Liu, W. Khalil, T. Y. Hsiang, S. Alexandrou, “Ultrafast nanoscale metal-semiconductor-metal photodetectors on bulk and low-temperature grown GaAs,” Appl. Phys. Lett. 61, 819–821 (1992).
[CrossRef]

Loka, H. S.

H. S. Loka, S. D. Benjamin, P. W. E. Smith, “Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices,” IEEE J. Quantum Electron. 34, 1426–1437 (1998).
[CrossRef]

Look, D. C.

D. C. Look, Z.-Q. Fang, J. W. Look, J. R. Sizelove, “Hopping conduction in molecular beam epitaxial GaAs grown at very low temperatures,” J. Electrochem. Soc. 141, 747–750 (1994).
[CrossRef]

D. C. Look, G. D. Robinson, J. R. Sizelove, C. E. Stutz, “Electrical properties of molecular beam epitaxial GaAs grown at 300–450 °C,” J. Electron. Mater. 22, 1425–1428 (1993).
[CrossRef]

Look, J. W.

D. C. Look, Z.-Q. Fang, J. W. Look, J. R. Sizelove, “Hopping conduction in molecular beam epitaxial GaAs grown at very low temperatures,” J. Electrochem. Soc. 141, 747–750 (1994).
[CrossRef]

Ludwig, C.

C. Ludwig, J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996).
[CrossRef]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers, IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Nelson, L. E.

K. Tamura, L. E. Nelson, H. A. Haus, E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
[CrossRef]

Ploog, K. H.

J. Herfort, G. Apostolopoulos, K.-J. Friedland, H. Kostial, W. Ulrici, L. Däweritz, M. Leitner, P. Glas, K. H. Ploog, “In situ controlled growth of low-temperature GaAs and its application for mode locking devices,” Jpn. J. Appl. Phys. 39, 2452–2456 (2000).
[CrossRef]

Riedel, A.

Robinson, G. D.

D. C. Look, G. D. Robinson, J. R. Sizelove, C. E. Stutz, “Electrical properties of molecular beam epitaxial GaAs grown at 300–450 °C,” J. Electron. Mater. 22, 1425–1428 (1993).
[CrossRef]

Said, A. A.

Sandrock, T.

M. Leitner, P. Glas, T. Sandrock, M. Wrage, G. Apostolopoulos, A. Riedel, H. Kostial, K.-J. Friedland, L. DäweritzSelf-starting mode locking of a Nd:glass fiber laser by use of the third-order nonlinearity of low-temperature-grown GaAs,” Opt. Lett. 24, 1567–1569 (1999).
[CrossRef]

M. Leitner, P. Glas, M. Wrage, T. Sandrock, H. Legall, A. Heuer, G. Apostolopoulos, J. Herfort, L. Däweritz, “Mode locked Nd:glass fiber laser using intensity dependent defocusing by low-temperature-grown GaAs” in Conference on Lasers and Electro-Optics Europe (Institute of Electrical and Electronics Engineers, New York, 2000), paper CMB4.

Sheik-Bahae, M.

Sizelove, J. R.

D. C. Look, Z.-Q. Fang, J. W. Look, J. R. Sizelove, “Hopping conduction in molecular beam epitaxial GaAs grown at very low temperatures,” J. Electrochem. Soc. 141, 747–750 (1994).
[CrossRef]

D. C. Look, G. D. Robinson, J. R. Sizelove, C. E. Stutz, “Electrical properties of molecular beam epitaxial GaAs grown at 300–450 °C,” J. Electron. Mater. 22, 1425–1428 (1993).
[CrossRef]

Smith, P. W. E.

H. S. Loka, S. D. Benjamin, P. W. E. Smith, “Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices,” IEEE J. Quantum Electron. 34, 1426–1437 (1998).
[CrossRef]

Stutz, C. E.

D. C. Look, G. D. Robinson, J. R. Sizelove, C. E. Stutz, “Electrical properties of molecular beam epitaxial GaAs grown at 300–450 °C,” J. Electron. Mater. 22, 1425–1428 (1993).
[CrossRef]

Tamura, K.

K. Tamura, L. E. Nelson, H. A. Haus, E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
[CrossRef]

Tani, M.

M. Tani, K.-S. Lee, X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µm probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[CrossRef]

Ulrici, W.

J. Herfort, G. Apostolopoulos, K.-J. Friedland, H. Kostial, W. Ulrici, L. Däweritz, M. Leitner, P. Glas, K. H. Ploog, “In situ controlled growth of low-temperature GaAs and its application for mode locking devices,” Jpn. J. Appl. Phys. 39, 2452–2456 (2000).
[CrossRef]

Van Stryland, E. W.

Wang, J.

Wei, T. H.

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers, IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Wrage, M.

M. Leitner, P. Glas, T. Sandrock, M. Wrage, G. Apostolopoulos, A. Riedel, H. Kostial, K.-J. Friedland, L. DäweritzSelf-starting mode locking of a Nd:glass fiber laser by use of the third-order nonlinearity of low-temperature-grown GaAs,” Opt. Lett. 24, 1567–1569 (1999).
[CrossRef]

M. Leitner, P. Glas, M. Wrage, T. Sandrock, H. Legall, A. Heuer, G. Apostolopoulos, J. Herfort, L. Däweritz, “Mode locked Nd:glass fiber laser using intensity dependent defocusing by low-temperature-grown GaAs” in Conference on Lasers and Electro-Optics Europe (Institute of Electrical and Electronics Engineers, New York, 2000), paper CMB4.

Young, J.

Zhang, X.-C.

M. Tani, K.-S. Lee, X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µm probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[CrossRef]

Appl. Phys. Lett. (5)

M. Tani, K.-S. Lee, X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µm probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[CrossRef]

S. Y. Chou, Y. Liu, W. Khalil, T. Y. Hsiang, S. Alexandrou, “Ultrafast nanoscale metal-semiconductor-metal photodetectors on bulk and low-temperature grown GaAs,” Appl. Phys. Lett. 61, 819–821 (1992).
[CrossRef]

C. Ludwig, J. Kuhl, “Studies of the temporal and spectral shape of terahertz pulses generated from photoconducting switches,” Appl. Phys. Lett. 69, 1194–1196 (1996).
[CrossRef]

D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus, E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. S. Loka, S. D. Benjamin, P. W. E. Smith, “Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices,” IEEE J. Quantum Electron. 34, 1426–1437 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid state lasers, IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

J. Electrochem. Soc. (1)

D. C. Look, Z.-Q. Fang, J. W. Look, J. R. Sizelove, “Hopping conduction in molecular beam epitaxial GaAs grown at very low temperatures,” J. Electrochem. Soc. 141, 747–750 (1994).
[CrossRef]

J. Electron. Mater. (1)

D. C. Look, G. D. Robinson, J. R. Sizelove, C. E. Stutz, “Electrical properties of molecular beam epitaxial GaAs grown at 300–450 °C,” J. Electron. Mater. 22, 1425–1428 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

J. Herfort, G. Apostolopoulos, K.-J. Friedland, H. Kostial, W. Ulrici, L. Däweritz, M. Leitner, P. Glas, K. H. Ploog, “In situ controlled growth of low-temperature GaAs and its application for mode locking devices,” Jpn. J. Appl. Phys. 39, 2452–2456 (2000).
[CrossRef]

Opt. Lett. (1)

Other (1)

M. Leitner, P. Glas, M. Wrage, T. Sandrock, H. Legall, A. Heuer, G. Apostolopoulos, J. Herfort, L. Däweritz, “Mode locked Nd:glass fiber laser using intensity dependent defocusing by low-temperature-grown GaAs” in Conference on Lasers and Electro-Optics Europe (Institute of Electrical and Electronics Engineers, New York, 2000), paper CMB4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Emission spectrum of the laser under mode-locking operation (solid curve), and reflectivity spectrum of the LT-GaAs device (dashed curve). (b) Noncollinear autocorrelation trace of the pulse from signal A.

Fig. 2
Fig. 2

Experimental setup and cross-sectional view of the semiconductor device: M, mirror and g, grating.

Fig. 3
Fig. 3

Electrical response of the LT-GaAs device. The inset shows the pulse train on a long time scale. The 10-MHz repetition rate corresponds to the round-trip time of the laser pulse.

Metrics