Abstract

A method that uses two quadrant detectors (QDs) for sensing wave-front tilt is described. The detectors are set at the front and back of the focal plane of the focusing optics. When the intensity distribution at the aperture of a telescope is not uniform because of atmospheric turbulence, the wave-front tilt can be measured more accurately with our two-QD method than with a conventional single-focal-plane QD. We proved this method to be effective by using it for fixed-star observation. Application of the method to a ground-to-satellite laser beam pointing system showed that it increases the intensity of the laser beam that is transmitted to a satellite.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ma, H. Sun, S. Wang, D. Yan, “Effects of atmospheric turbulence on photodetector arrays,” Appl. Opt. 28, 2123–2126 (1989).
    [CrossRef] [PubMed]
  2. R. A. Humphreys, C. A. Primmerman, L. C. Bradley, J. Herrmann, “Atmospheric-turbulence measurements using a synthetic beacon in the mesospheric sodium layer,” Opt. Lett. 16, 1367–1369 (1991).
    [CrossRef] [PubMed]
  3. P. Hickson, “Wave-front curvature sensing from a single defocused image,” J. Opt. Soc. Am. A 11, 1667–1673 (1994).
    [CrossRef]
  4. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27, 1223–1225 (1988).
    [CrossRef] [PubMed]
  5. F. Roddier, “Wavefront sensing and the irradiance transport equation,” Appl. Opt. 29, 1402–1403 (1990).
    [CrossRef] [PubMed]
  6. M. Toyoda, H. Takami, K. Araki, T. Aruga, “Characteristics measurement of avalanche photo-diode quadrant detector for dim light position sensing,” Rev. Laser Eng. 21, 392–398 (1993), in Japanese.
  7. K. Araki, M. Toyoshima, T. Takahashi, T. Fukazawa, M. Toyoda, M. Shikatani, Y. Arimoto, “Experimental operations of laser communication equipment onboard ETS-VI satellite,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 264–275 (1997).
    [CrossRef]
  8. M. Toyoshima, K. Araki, “Far-field pattern measurement of an onboard laser transmitter by use of a space-to-ground optical link,” Appl. Opt. 37, 1720–1730 (1998).
    [CrossRef]

1998 (1)

1994 (1)

1993 (1)

M. Toyoda, H. Takami, K. Araki, T. Aruga, “Characteristics measurement of avalanche photo-diode quadrant detector for dim light position sensing,” Rev. Laser Eng. 21, 392–398 (1993), in Japanese.

1991 (1)

1990 (1)

1989 (1)

1988 (1)

Araki, K.

M. Toyoshima, K. Araki, “Far-field pattern measurement of an onboard laser transmitter by use of a space-to-ground optical link,” Appl. Opt. 37, 1720–1730 (1998).
[CrossRef]

M. Toyoda, H. Takami, K. Araki, T. Aruga, “Characteristics measurement of avalanche photo-diode quadrant detector for dim light position sensing,” Rev. Laser Eng. 21, 392–398 (1993), in Japanese.

K. Araki, M. Toyoshima, T. Takahashi, T. Fukazawa, M. Toyoda, M. Shikatani, Y. Arimoto, “Experimental operations of laser communication equipment onboard ETS-VI satellite,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 264–275 (1997).
[CrossRef]

Arimoto, Y.

K. Araki, M. Toyoshima, T. Takahashi, T. Fukazawa, M. Toyoda, M. Shikatani, Y. Arimoto, “Experimental operations of laser communication equipment onboard ETS-VI satellite,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 264–275 (1997).
[CrossRef]

Aruga, T.

M. Toyoda, H. Takami, K. Araki, T. Aruga, “Characteristics measurement of avalanche photo-diode quadrant detector for dim light position sensing,” Rev. Laser Eng. 21, 392–398 (1993), in Japanese.

Bradley, L. C.

Fukazawa, T.

K. Araki, M. Toyoshima, T. Takahashi, T. Fukazawa, M. Toyoda, M. Shikatani, Y. Arimoto, “Experimental operations of laser communication equipment onboard ETS-VI satellite,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 264–275 (1997).
[CrossRef]

Herrmann, J.

Hickson, P.

Humphreys, R. A.

Ma, J.

Primmerman, C. A.

Roddier, F.

Shikatani, M.

K. Araki, M. Toyoshima, T. Takahashi, T. Fukazawa, M. Toyoda, M. Shikatani, Y. Arimoto, “Experimental operations of laser communication equipment onboard ETS-VI satellite,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 264–275 (1997).
[CrossRef]

Sun, H.

Takahashi, T.

K. Araki, M. Toyoshima, T. Takahashi, T. Fukazawa, M. Toyoda, M. Shikatani, Y. Arimoto, “Experimental operations of laser communication equipment onboard ETS-VI satellite,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 264–275 (1997).
[CrossRef]

Takami, H.

M. Toyoda, H. Takami, K. Araki, T. Aruga, “Characteristics measurement of avalanche photo-diode quadrant detector for dim light position sensing,” Rev. Laser Eng. 21, 392–398 (1993), in Japanese.

Toyoda, M.

M. Toyoda, H. Takami, K. Araki, T. Aruga, “Characteristics measurement of avalanche photo-diode quadrant detector for dim light position sensing,” Rev. Laser Eng. 21, 392–398 (1993), in Japanese.

K. Araki, M. Toyoshima, T. Takahashi, T. Fukazawa, M. Toyoda, M. Shikatani, Y. Arimoto, “Experimental operations of laser communication equipment onboard ETS-VI satellite,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 264–275 (1997).
[CrossRef]

Toyoshima, M.

M. Toyoshima, K. Araki, “Far-field pattern measurement of an onboard laser transmitter by use of a space-to-ground optical link,” Appl. Opt. 37, 1720–1730 (1998).
[CrossRef]

K. Araki, M. Toyoshima, T. Takahashi, T. Fukazawa, M. Toyoda, M. Shikatani, Y. Arimoto, “Experimental operations of laser communication equipment onboard ETS-VI satellite,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 264–275 (1997).
[CrossRef]

Wang, S.

Yan, D.

Appl. Opt. (4)

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Rev. Laser Eng. (1)

M. Toyoda, H. Takami, K. Araki, T. Aruga, “Characteristics measurement of avalanche photo-diode quadrant detector for dim light position sensing,” Rev. Laser Eng. 21, 392–398 (1993), in Japanese.

Other (1)

K. Araki, M. Toyoshima, T. Takahashi, T. Fukazawa, M. Toyoda, M. Shikatani, Y. Arimoto, “Experimental operations of laser communication equipment onboard ETS-VI satellite,” in Free-Space Laser Communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE2990, 264–275 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Intensity of incident optical wave, the tilt of its wave front at the telescope aperture, and received intensity distribution of the optical spot at two QDs, arranged at the front and back of the focal plane of the focusing lens.

Fig. 2
Fig. 2

Optical configuration of the wave-front tilt sensor with the optical axis adjusted by use of a tip-tilt mirror. The laser system is described in Section 4.

Fig. 3
Fig. 3

Block diagram of the electrical circuits of the wave-front tilt sensor.

Fig. 4
Fig. 4

Variation in normalized differential signals E x1, E x2, and E x and the sum of received power variations on QD1 for fixed-star observation. The observation was carried out at 1:18 Japan Standard Time (JST) on 25 January 1996.

Fig. 5
Fig. 5

Power spectral densities of differential signals E x1, E x2, and E x as shown in Fig. 4.

Fig. 6
Fig. 6

Sum of signals received on QD1 at the downlink and driving voltage for one tip-tilt mirror with a coefficient of 17.2 µrad/V scanned in the azimuth direction (x axis as shown in Fig. 3). The observation was carried out on 25 January 1996.

Fig. 7
Fig. 7

Variations in the uplink laser power in the onboard CCD sensor with and without tip-tilt mirrors.

Tables (2)

Tables Icon

Table 1 Wave-Front Tilt Sensor Specifications

Tables Icon

Table 2 Laser Beam Transmitting System Specifications

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I x ,   y ,   z z = - I x ,   y ,   z   ·   W x ,   y ,   z + I x ,   y ,   z 2 W x ,   y ,   z
E x = E x 1 + E x 2 2 = 1 2 a 1 + b 1 - c 1 - d 1 a 1 + b 1 + c 1 + d 1 + a 2 + b 2 - c 2 - d 2 a 2 + b 2 + c 2 + d 2 , E y = E y 1 + E y 2 2 = 1 2 a 1 + d 1 - c 1 - b 1 a 1 + b 1 + c 1 + d 1 + a 2 + d 2 - c 2 - b 2 a 2 + b 2 + c 2 + d 2 ,

Metrics