Abstract

We describe and experimentally demonstrate a novel (to our knowledge) surface profiling technique, for which we propose the term closed-loop optical coherence topography. This technique is a scanning beam, servo-locked variation of low-coherence interferometry. It allows for the sub-wavelength-resolution tracking of a weakly scattering macroscopic-scale surface, with the surface profile being directly output by the controlling electronics. The absence of significant real-time computational overhead makes the technique well suited to high-speed tracking. The use of a micrometer-scale coherence gate efficiently suppresses signals arising from structures not associated with the surface. These features make the technique particularly well suited to real-time surface profiling of in vivo, macroscopic biological surfaces.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Creath, in Progress in Optics: Volume XXVI, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Chap. V.
  2. L. Deck, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
    [CrossRef] [PubMed]
  3. J. P. Lesso, A. J. Duncan, W. Sibbett, M. J. Padgett, “Surface profilometry based on polarization analysis,” Opt. Lett. 23, 1800–1802 (1998).
    [CrossRef]
  4. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
    [CrossRef] [PubMed]
  5. G. Häusler, M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
    [CrossRef]
  6. A. Bartoli, P. Poggi, F. Quercioli, B. Tiribilli, “Fast one-dimensional profilometer with a compact disk pickup,” Appl. Opt. 40, 1044–1048 (2001).
    [CrossRef]
  7. D. C. Leiner, D. T. Moore, “Real-time phase microscopy using a phase-lock interferometer,” Rev. Sci. Instrum. 49, 1702–1705 (1978).
    [CrossRef] [PubMed]
  8. T. Suzuki, O. Sasaki, T. Maruyama, “Phase-locked laser diode interferometry for surface profile measurement,” Appl. Opt. 28, 4407–4410 (1989).
    [CrossRef] [PubMed]
  9. D. K. Hamilton, H. J. Matthews, “The confocal interference microscope as a surface profilometer,” Optik (Stuttgart) 71, 31–34 (1985).
  10. H. J. Matthews, D. K. Hamilton, C. J. R. Sheppard, “Surface profiling by phase-locked interferometry,” Appl. Opt. 25, 2372–2374 (1986).
    [CrossRef] [PubMed]
  11. J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
    [CrossRef]
  12. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
    [CrossRef] [PubMed]
  13. D. Silva, A. V. Zvyagin, D. D. Sampson, “Closed loop optical coherence tomography for high speed profiling of macroscopic biological surfaces,” in Proceedings of the 12th Conference of the Australian Optical Society, (Australian Optical Society, ISBN 0-7340-1737-5), p. 8, Sydney, (1999).
  14. J. D. McKinney, M. A. Webster, K. J. Webb, A. M. Weiner, “Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source,” Opt. Lett. 25, 4–6 (2000).
    [CrossRef]
  15. S. R. Chinn, E. A. Swanson, “Multi-layer optical readout using direct of interferometric detection and broad-bandwidth light sources,” Opt. Memory Neural Networks 5, 197–217 (1996).
  16. See, for example, A. A. Sa., Model AA.DTS.X-400, at http://www.a-a.fr .
  17. S. Markos, “Refractive Surgery and Optical Aberrations,” Opt. Photon. News 12, 22–25, (2001).
    [CrossRef]

2001 (2)

2000 (1)

1998 (2)

J. P. Lesso, A. J. Duncan, W. Sibbett, M. J. Padgett, “Surface profilometry based on polarization analysis,” Opt. Lett. 23, 1800–1802 (1998).
[CrossRef]

G. Häusler, M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

1996 (2)

S. R. Chinn, E. A. Swanson, “Multi-layer optical readout using direct of interferometric detection and broad-bandwidth light sources,” Opt. Memory Neural Networks 5, 197–217 (1996).

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

1994 (1)

1993 (1)

1992 (1)

1989 (1)

1986 (1)

1985 (1)

D. K. Hamilton, H. J. Matthews, “The confocal interference microscope as a surface profilometer,” Optik (Stuttgart) 71, 31–34 (1985).

1978 (1)

D. C. Leiner, D. T. Moore, “Real-time phase microscopy using a phase-lock interferometer,” Rev. Sci. Instrum. 49, 1702–1705 (1978).
[CrossRef] [PubMed]

Bartoli, A.

Chinn, S. R.

S. R. Chinn, E. A. Swanson, “Multi-layer optical readout using direct of interferometric detection and broad-bandwidth light sources,” Opt. Memory Neural Networks 5, 197–217 (1996).

Creath, K.

K. Creath, in Progress in Optics: Volume XXVI, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Chap. V.

Deck, L.

Duncan, A. J.

Fujimoto, J. G.

Hamilton, D. K.

H. J. Matthews, D. K. Hamilton, C. J. R. Sheppard, “Surface profiling by phase-locked interferometry,” Appl. Opt. 25, 2372–2374 (1986).
[CrossRef] [PubMed]

D. K. Hamilton, H. J. Matthews, “The confocal interference microscope as a surface profilometer,” Optik (Stuttgart) 71, 31–34 (1985).

Häusler, G.

G. Häusler, M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Hee, M. R.

Huang, D.

Izatt, J. A.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef] [PubMed]

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Leiner, D. C.

D. C. Leiner, D. T. Moore, “Real-time phase microscopy using a phase-lock interferometer,” Rev. Sci. Instrum. 49, 1702–1705 (1978).
[CrossRef] [PubMed]

Lesso, J. P.

Lin, C. P.

Lindner, M. W.

G. Häusler, M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Markos, S.

S. Markos, “Refractive Surgery and Optical Aberrations,” Opt. Photon. News 12, 22–25, (2001).
[CrossRef]

Maruyama, T.

Matthews, H. J.

H. J. Matthews, D. K. Hamilton, C. J. R. Sheppard, “Surface profiling by phase-locked interferometry,” Appl. Opt. 25, 2372–2374 (1986).
[CrossRef] [PubMed]

D. K. Hamilton, H. J. Matthews, “The confocal interference microscope as a surface profilometer,” Optik (Stuttgart) 71, 31–34 (1985).

McKinney, J. D.

Moore, D. T.

D. C. Leiner, D. T. Moore, “Real-time phase microscopy using a phase-lock interferometer,” Rev. Sci. Instrum. 49, 1702–1705 (1978).
[CrossRef] [PubMed]

Padgett, M. J.

Poggi, P.

Puliafito, C. A.

Quercioli, F.

Sampson, D. D.

D. Silva, A. V. Zvyagin, D. D. Sampson, “Closed loop optical coherence tomography for high speed profiling of macroscopic biological surfaces,” in Proceedings of the 12th Conference of the Australian Optical Society, (Australian Optical Society, ISBN 0-7340-1737-5), p. 8, Sydney, (1999).

Sasaki, O.

Schuman, J. S.

Sheppard, C. J. R.

Sibbett, W.

Silva, D.

D. Silva, A. V. Zvyagin, D. D. Sampson, “Closed loop optical coherence tomography for high speed profiling of macroscopic biological surfaces,” in Proceedings of the 12th Conference of the Australian Optical Society, (Australian Optical Society, ISBN 0-7340-1737-5), p. 8, Sydney, (1999).

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Suzuki, T.

Swanson, E. A.

Tiribilli, B.

Wang, H.-W.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

Webb, K. J.

Webster, M. A.

Weiner, A. M.

Zvyagin, A. V.

D. Silva, A. V. Zvyagin, D. D. Sampson, “Closed loop optical coherence tomography for high speed profiling of macroscopic biological surfaces,” in Proceedings of the 12th Conference of the Australian Optical Society, (Australian Optical Society, ISBN 0-7340-1737-5), p. 8, Sydney, (1999).

Appl. Opt. (4)

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy of gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996).
[CrossRef]

J. Biomed. Opt. (1)

G. Häusler, M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Opt. Lett. (4)

Opt. Memory Neural Networks (1)

S. R. Chinn, E. A. Swanson, “Multi-layer optical readout using direct of interferometric detection and broad-bandwidth light sources,” Opt. Memory Neural Networks 5, 197–217 (1996).

Opt. Photon. News (1)

S. Markos, “Refractive Surgery and Optical Aberrations,” Opt. Photon. News 12, 22–25, (2001).
[CrossRef]

Optik (Stuttgart) (1)

D. K. Hamilton, H. J. Matthews, “The confocal interference microscope as a surface profilometer,” Optik (Stuttgart) 71, 31–34 (1985).

Rev. Sci. Instrum. (1)

D. C. Leiner, D. T. Moore, “Real-time phase microscopy using a phase-lock interferometer,” Rev. Sci. Instrum. 49, 1702–1705 (1978).
[CrossRef] [PubMed]

Other (3)

K. Creath, in Progress in Optics: Volume XXVI, E. Wolf, ed. (North-Holland, Amsterdam, 1988), Chap. V.

See, for example, A. A. Sa., Model AA.DTS.X-400, at http://www.a-a.fr .

D. Silva, A. V. Zvyagin, D. D. Sampson, “Closed loop optical coherence tomography for high speed profiling of macroscopic biological surfaces,” in Proceedings of the 12th Conference of the Australian Optical Society, (Australian Optical Society, ISBN 0-7340-1737-5), p. 8, Sydney, (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of a closed-loop OCT. OPs, OPr denote the optical path in the sample and reference arms, respectively; Δγ denotes the coherence-gate width.

Fig. 2
Fig. 2

Schematic diagram of experimental setup. BBS—broadband source; GM—galvanometer-mounted mirror; ID—iris diaphragm; BS—beamsplitter; PD—photodetector; M—plane mirror; He–Ne—helium–neon laser; LIA—lock-in amplifier; In, R, Out—input, reference, output terminals of the lock-in amplifier, respectively; PID—proportional-integral-differential controller.

Fig. 3
Fig. 3

Optical-path difference versus time before and after closing the servo control loop. Scale at right shows optical-path difference scaled by the mean wavelength of the source.

Fig. 4
Fig. 4

Detected control signal (upper curve) and signal at photodetector PD2 (lower curve) versus time as the probe beam scans across the tilted surface of the compact disk. AU—arbitrary units.

Fig. 5
Fig. 5

Measured line profile of the surface of a tilted compact disk using closed-loop OCT (solid curve) and optical coherence tomography (open circles).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

id  R+12+|γΔz|Rcos2k0Δz,
s  ξRd|γ|dΔzmΔzm=Δz cos2k0Δz-2k0|γΔz|sin2k0Δz.
s  ξR |γΔz|sin2k0Δz.

Metrics