Abstract

To compensate for the imperfections of the endoscopic mechanical structure and the limitations of working space, a new technology based on the recursive minimum/maximum method is proposed to enlarge images obtained by the medical electronic endoscope. This method can be used repeatedly to obtain image enlargement to 2× by optimizing the neighborhood information of the pixels of interest in adjustable windows. In order to ensure the best evaluation of the pixel, the algorithm criterion is presented to decide whether the new gray value is assigned to the pixel. Experimental results from enlarged endoscopic images are presented that demonstrate that the recursive minimum/maximum method for image enlargement can preserve the fine details with rich edge information and with better visualization.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kato, J. P. Barron, Electronic Videoendoscopic (Harwood, Academic, Chur, Switzerland, 1993).
  2. D. G. Falconer, “Image enhancement and film-grain noise,” Opt. Acta 17, 693–705 (1970).
    [CrossRef]
  3. W. S. Boyle, G. E. Smith, “Charge coupled semiconductor devices,” Bell Syst. Tech. J. 49, 587–593 (1970).
    [CrossRef]
  4. Y. Hatada, S. Iwane, H. Tohno, T. Baba, A. Munakata, Y. Yoshida, “A new method for the measurement of gastric and colonic lesions with an electronic endoscopic and image processor,” Gastrointestinal endoscopy 37, 275–286 (1991).
  5. K. V. Asari, S. Kumar, D. Radhakrishnan, “A new approach for nonlinear distortion correction in endoscopic images based on least squares estimation,” IEEE Trans. Med. Imaging 18, 345–354 (1999).
    [CrossRef] [PubMed]
  6. N. Herodotou, A. N. Venetsanopoulos, “Color image interpolation for high resolution acquisition and display device,” IEEE Trans. Commun. Electron. 41, 1118–1125 (1995).
  7. W. E. Smith, N. Vakil, S. A. Maisilin, “Correction of distortion in endoscopic image,” IEEE Trans. Med. Imaging 11, 117–122 (1992).
    [CrossRef]
  8. H. Haneishi, Y. Yagihashi, Y. Miyake, “A new method for distortion correction of electronic endoscope images,” IEEE Trans. Med. Imaging 14, 548–555 (1995).
    [CrossRef] [PubMed]
  9. G. R. Arce, R. E. Foster, “Detail-preserving ranked-order based filters for image processing,” IEEE Trans. Acoust. Speech Signal Process. 37, 89–98 (1989).
    [CrossRef]
  10. R. L. Kashyap, K. B. Eom, “Robust image modeling techniques with an image restoration application,” IEEE Trans. Acoust. Speech Signal Process. 36, 1313–1325 (1988).
    [CrossRef]

1999

K. V. Asari, S. Kumar, D. Radhakrishnan, “A new approach for nonlinear distortion correction in endoscopic images based on least squares estimation,” IEEE Trans. Med. Imaging 18, 345–354 (1999).
[CrossRef] [PubMed]

1995

N. Herodotou, A. N. Venetsanopoulos, “Color image interpolation for high resolution acquisition and display device,” IEEE Trans. Commun. Electron. 41, 1118–1125 (1995).

H. Haneishi, Y. Yagihashi, Y. Miyake, “A new method for distortion correction of electronic endoscope images,” IEEE Trans. Med. Imaging 14, 548–555 (1995).
[CrossRef] [PubMed]

1992

W. E. Smith, N. Vakil, S. A. Maisilin, “Correction of distortion in endoscopic image,” IEEE Trans. Med. Imaging 11, 117–122 (1992).
[CrossRef]

1991

Y. Hatada, S. Iwane, H. Tohno, T. Baba, A. Munakata, Y. Yoshida, “A new method for the measurement of gastric and colonic lesions with an electronic endoscopic and image processor,” Gastrointestinal endoscopy 37, 275–286 (1991).

1989

G. R. Arce, R. E. Foster, “Detail-preserving ranked-order based filters for image processing,” IEEE Trans. Acoust. Speech Signal Process. 37, 89–98 (1989).
[CrossRef]

1988

R. L. Kashyap, K. B. Eom, “Robust image modeling techniques with an image restoration application,” IEEE Trans. Acoust. Speech Signal Process. 36, 1313–1325 (1988).
[CrossRef]

1970

D. G. Falconer, “Image enhancement and film-grain noise,” Opt. Acta 17, 693–705 (1970).
[CrossRef]

W. S. Boyle, G. E. Smith, “Charge coupled semiconductor devices,” Bell Syst. Tech. J. 49, 587–593 (1970).
[CrossRef]

Arce, G. R.

G. R. Arce, R. E. Foster, “Detail-preserving ranked-order based filters for image processing,” IEEE Trans. Acoust. Speech Signal Process. 37, 89–98 (1989).
[CrossRef]

Asari, K. V.

K. V. Asari, S. Kumar, D. Radhakrishnan, “A new approach for nonlinear distortion correction in endoscopic images based on least squares estimation,” IEEE Trans. Med. Imaging 18, 345–354 (1999).
[CrossRef] [PubMed]

Baba, T.

Y. Hatada, S. Iwane, H. Tohno, T. Baba, A. Munakata, Y. Yoshida, “A new method for the measurement of gastric and colonic lesions with an electronic endoscopic and image processor,” Gastrointestinal endoscopy 37, 275–286 (1991).

Barron, J. P.

H. Kato, J. P. Barron, Electronic Videoendoscopic (Harwood, Academic, Chur, Switzerland, 1993).

Boyle, W. S.

W. S. Boyle, G. E. Smith, “Charge coupled semiconductor devices,” Bell Syst. Tech. J. 49, 587–593 (1970).
[CrossRef]

Eom, K. B.

R. L. Kashyap, K. B. Eom, “Robust image modeling techniques with an image restoration application,” IEEE Trans. Acoust. Speech Signal Process. 36, 1313–1325 (1988).
[CrossRef]

Falconer, D. G.

D. G. Falconer, “Image enhancement and film-grain noise,” Opt. Acta 17, 693–705 (1970).
[CrossRef]

Foster, R. E.

G. R. Arce, R. E. Foster, “Detail-preserving ranked-order based filters for image processing,” IEEE Trans. Acoust. Speech Signal Process. 37, 89–98 (1989).
[CrossRef]

Haneishi, H.

H. Haneishi, Y. Yagihashi, Y. Miyake, “A new method for distortion correction of electronic endoscope images,” IEEE Trans. Med. Imaging 14, 548–555 (1995).
[CrossRef] [PubMed]

Hatada, Y.

Y. Hatada, S. Iwane, H. Tohno, T. Baba, A. Munakata, Y. Yoshida, “A new method for the measurement of gastric and colonic lesions with an electronic endoscopic and image processor,” Gastrointestinal endoscopy 37, 275–286 (1991).

Herodotou, N.

N. Herodotou, A. N. Venetsanopoulos, “Color image interpolation for high resolution acquisition and display device,” IEEE Trans. Commun. Electron. 41, 1118–1125 (1995).

Iwane, S.

Y. Hatada, S. Iwane, H. Tohno, T. Baba, A. Munakata, Y. Yoshida, “A new method for the measurement of gastric and colonic lesions with an electronic endoscopic and image processor,” Gastrointestinal endoscopy 37, 275–286 (1991).

Kashyap, R. L.

R. L. Kashyap, K. B. Eom, “Robust image modeling techniques with an image restoration application,” IEEE Trans. Acoust. Speech Signal Process. 36, 1313–1325 (1988).
[CrossRef]

Kato, H.

H. Kato, J. P. Barron, Electronic Videoendoscopic (Harwood, Academic, Chur, Switzerland, 1993).

Kumar, S.

K. V. Asari, S. Kumar, D. Radhakrishnan, “A new approach for nonlinear distortion correction in endoscopic images based on least squares estimation,” IEEE Trans. Med. Imaging 18, 345–354 (1999).
[CrossRef] [PubMed]

Maisilin, S. A.

W. E. Smith, N. Vakil, S. A. Maisilin, “Correction of distortion in endoscopic image,” IEEE Trans. Med. Imaging 11, 117–122 (1992).
[CrossRef]

Miyake, Y.

H. Haneishi, Y. Yagihashi, Y. Miyake, “A new method for distortion correction of electronic endoscope images,” IEEE Trans. Med. Imaging 14, 548–555 (1995).
[CrossRef] [PubMed]

Munakata, A.

Y. Hatada, S. Iwane, H. Tohno, T. Baba, A. Munakata, Y. Yoshida, “A new method for the measurement of gastric and colonic lesions with an electronic endoscopic and image processor,” Gastrointestinal endoscopy 37, 275–286 (1991).

Radhakrishnan, D.

K. V. Asari, S. Kumar, D. Radhakrishnan, “A new approach for nonlinear distortion correction in endoscopic images based on least squares estimation,” IEEE Trans. Med. Imaging 18, 345–354 (1999).
[CrossRef] [PubMed]

Smith, G. E.

W. S. Boyle, G. E. Smith, “Charge coupled semiconductor devices,” Bell Syst. Tech. J. 49, 587–593 (1970).
[CrossRef]

Smith, W. E.

W. E. Smith, N. Vakil, S. A. Maisilin, “Correction of distortion in endoscopic image,” IEEE Trans. Med. Imaging 11, 117–122 (1992).
[CrossRef]

Tohno, H.

Y. Hatada, S. Iwane, H. Tohno, T. Baba, A. Munakata, Y. Yoshida, “A new method for the measurement of gastric and colonic lesions with an electronic endoscopic and image processor,” Gastrointestinal endoscopy 37, 275–286 (1991).

Vakil, N.

W. E. Smith, N. Vakil, S. A. Maisilin, “Correction of distortion in endoscopic image,” IEEE Trans. Med. Imaging 11, 117–122 (1992).
[CrossRef]

Venetsanopoulos, A. N.

N. Herodotou, A. N. Venetsanopoulos, “Color image interpolation for high resolution acquisition and display device,” IEEE Trans. Commun. Electron. 41, 1118–1125 (1995).

Yagihashi, Y.

H. Haneishi, Y. Yagihashi, Y. Miyake, “A new method for distortion correction of electronic endoscope images,” IEEE Trans. Med. Imaging 14, 548–555 (1995).
[CrossRef] [PubMed]

Yoshida, Y.

Y. Hatada, S. Iwane, H. Tohno, T. Baba, A. Munakata, Y. Yoshida, “A new method for the measurement of gastric and colonic lesions with an electronic endoscopic and image processor,” Gastrointestinal endoscopy 37, 275–286 (1991).

Bell Syst. Tech. J.

W. S. Boyle, G. E. Smith, “Charge coupled semiconductor devices,” Bell Syst. Tech. J. 49, 587–593 (1970).
[CrossRef]

Gastrointestinal endoscopy

Y. Hatada, S. Iwane, H. Tohno, T. Baba, A. Munakata, Y. Yoshida, “A new method for the measurement of gastric and colonic lesions with an electronic endoscopic and image processor,” Gastrointestinal endoscopy 37, 275–286 (1991).

IEEE Trans. Acoust. Speech Signal Process.

G. R. Arce, R. E. Foster, “Detail-preserving ranked-order based filters for image processing,” IEEE Trans. Acoust. Speech Signal Process. 37, 89–98 (1989).
[CrossRef]

R. L. Kashyap, K. B. Eom, “Robust image modeling techniques with an image restoration application,” IEEE Trans. Acoust. Speech Signal Process. 36, 1313–1325 (1988).
[CrossRef]

IEEE Trans. Commun. Electron.

N. Herodotou, A. N. Venetsanopoulos, “Color image interpolation for high resolution acquisition and display device,” IEEE Trans. Commun. Electron. 41, 1118–1125 (1995).

IEEE Trans. Med. Imaging

W. E. Smith, N. Vakil, S. A. Maisilin, “Correction of distortion in endoscopic image,” IEEE Trans. Med. Imaging 11, 117–122 (1992).
[CrossRef]

H. Haneishi, Y. Yagihashi, Y. Miyake, “A new method for distortion correction of electronic endoscope images,” IEEE Trans. Med. Imaging 14, 548–555 (1995).
[CrossRef] [PubMed]

K. V. Asari, S. Kumar, D. Radhakrishnan, “A new approach for nonlinear distortion correction in endoscopic images based on least squares estimation,” IEEE Trans. Med. Imaging 18, 345–354 (1999).
[CrossRef] [PubMed]

Opt. Acta

D. G. Falconer, “Image enhancement and film-grain noise,” Opt. Acta 17, 693–705 (1970).
[CrossRef]

Other

H. Kato, J. P. Barron, Electronic Videoendoscopic (Harwood, Academic, Chur, Switzerland, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Windows used in image enlargement.

Fig. 2
Fig. 2

New pixel y and its neighborhood pixels.

Fig. 3
Fig. 3

Image enlargement procedures.

Fig. 4
Fig. 4

Original medical endoscopic images: (a) no noise, (b) low noise, (c) high noise.

Fig. 5
Fig. 5

Endoscopic images obtained by contracting a quarter of the pixels: (a) no noise, (b) low noise, (c) high noise.

Fig. 6
Fig. 6

Enlarged images for Fig. 5(a) with different enlargement methods: (a) the pixel-duplication method, (b) the Walsh interpolation method, (c) the recursive minimum/maximum method.

Fig. 7
Fig. 7

Enlarged images for Fig. 5(b). Otherwise, same as Fig. 6.

Fig. 8
Fig. 8

Enlarged images for Fig. 5(c). Otherwise, same as Fig. 6.

Fig. 9
Fig. 9

4× enlargement result for the medical endoscopic image.

Tables (3)

Tables Icon

Table 1 MSEs of the No-Noise Images with Different Enlargement Methods

Tables Icon

Table 2 MSEs of the Low-Noise Images with Different Enlargement Methods

Tables Icon

Table 3 MSEs of the High-Noise Images with Different Enlargement Methods

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

PL=Li, i=1,, n/2,
PE=Ei, i=1,, n/2,
Pmax=maxE1, E2,, En/2, Pmin=minL1, L2,, Ln/2;
y=Pmax+Pmin/2.
Y-A>T,
X=xi, i=1,, 8.
Y=yi, i=1,, 7.
ym=maxyi, i=1,, 7.
T=nym,
MSE=1n2i=0n-1i=0n-1fi-gi2,

Metrics