Abstract

Some characteristics of dyed gelatin films when polarization gratings are recorded are reported. Two dyes, Malachite Green and Methylene Blue, are used in our experiment. In particular, no dichromate was added to Methylene Blue plates before or after exposure. It is shown that, in spite of its having high viscosity, a relief grating is formed when orthogonal linearly polarized beams are superimposed upon the plates. In contrast with previous observations in another photoanisotropic medium, the frequency of the gelatin relief grating does not depend on the directions of the electric field of the orthogonal recording beams. Besides, when orthogonal circularly polarized beams are used in the formation of polarization gratings, no relief grating is produced. Finally, we study the phase modulation obtained after dehydration of the gelatin plates in which the polarization gratings were formed. Postdevelopment phase gratings do not preserve the polarization information of the interference pattern. Also, the grating frequency is increased by a factor of 2 for linear polarization, whereas for circular polarization there is no phase modulation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Solano, R. A. Lessard, P. C. Roberge, “Methylene blue sensitized gelatin as a photosensitive medium for conventional and polarizing holography,” Appl. Opt. 26, 1989–1997 (1987).
    [CrossRef] [PubMed]
  2. C. Solano, “Malachite green photosensitive plates,” Appl. Opt. 28, 3524–3528 (1989).
    [CrossRef] [PubMed]
  3. D. Pantelic, B. Muric, “Improving the holographic sensitivity of dichromated gelatin in the blue-green part of the spectrum by sensitization with xanthene dyes,” Appl. Opt. 40, 2871–2875 (2001).
    [CrossRef]
  4. S. D. Kakichashvili, “Method for phase polarization recording of holograms,” Sov. J. Quantum Electron. 4, 795–798 (1974).
    [CrossRef]
  5. T. Keinonen, S. Parkkonen, T. Jääskeläinen, “Low-power two-wave mixing in dry methylene-blue-sensitized gelatin films,” J. Mod. Opt. 45, 2561–2572 (1998).
  6. T. D. Ebralidze, N. A. Ebralidze, A. N. Mumladze, “Photoinduction of anisotropic grains in organic compounds,” Appl. Opt. 37, 6161–6163 (1998).
    [CrossRef]
  7. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1. A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
    [CrossRef] [PubMed]
  8. T. Huang, “Physics and applications of photoanisotropic organic volume holograms,” Ph.D. dissertation (University of Colorado, Boulder, Boulder, Colorado, 1993).
  9. M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, V. Dragostinova, “Photoinduced dichroism and birefringence in films of mordant pure yellow/poly(vinyl alcohol): simultaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
    [CrossRef]
  10. S. Hvilsted, F. Andruzzi, P. S. Ramanujam, “Side-chain liquid-crystalline polyesters for optical information storage,” Opt. Lett. 17, 1234–1236 (1992).
    [CrossRef] [PubMed]
  11. D. Bublitz, B. Fleck, L. Wenke, P. S. Ramanujam, S. Hvilsted, “Determination of the response time of photoanisotropy in azobenzene side-chain polyesters,” Opt. Commun. 182, 155–160 (2000).
    [CrossRef]
  12. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujan, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
    [CrossRef] [PubMed]
  13. P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
    [CrossRef]
  14. N. C. R. Holme, L. Nikolova, P. S. Ramanujam, S. Hvilsted, “An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1520 (1997).
    [CrossRef]
  15. I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257–1265 (1998).
    [CrossRef]
  16. P. A. Blanche, P. C. Lemaire, M. Dumont, M. Fisher, “Photoinduced orientation of azo dye in various polymer matrices,” Opt. Lett. 24, 1349–1351 (1999).
    [CrossRef]
  17. F. L. Labarthet, P. Rochon, A. Natansohn, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999).
    [CrossRef]
  18. S. Calixto, R. A. Lessard, “Holographic recording and reconstruction of polarized light with dyed plastic,” Appl. Opt. 23, 4313–4318 (1984).
    [CrossRef] [PubMed]
  19. L. Nikolova, T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” J. Mod. Opt. 31, 579–588 (1984).
  20. G. Martinez-Ponce, C. Solano, “Induced and form birefringence in high-frequency polarization gratings,” Appl. Opt. 40, 3850–3854 (2001).
    [CrossRef]
  21. T. Huang, K. H. Wagner, “Real-time joint transform correlation using photoanisotropic dye-polymer films,” Appl. Opt. 33, 7634–7645 (1994).
    [CrossRef] [PubMed]
  22. T. Huang, K. H. Wagner, “Photoanisotropic incoherent to coherent optical conversion,” Appl. Opt. 32, 1888–1900 (1993).
    [CrossRef] [PubMed]
  23. T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22, 1262–1267 (1986).
    [CrossRef]
  24. C. Solano, R. A. Lessard, “Phase gratings formed by induced anisotropy in dyed gelatin plates,” Appl. Opt. 24, 1776–1779 (1985).
    [CrossRef] [PubMed]
  25. D. Mangaiyarkarasi, P. K. Palanisamy, R. S. Sirohi, “Eosin dye soaked gelatin as a recording medium,” Opt. Eng. 39, 2138–2142 (2000).
    [CrossRef]

2001

2000

D. Mangaiyarkarasi, P. K. Palanisamy, R. S. Sirohi, “Eosin dye soaked gelatin as a recording medium,” Opt. Eng. 39, 2138–2142 (2000).
[CrossRef]

D. Bublitz, B. Fleck, L. Wenke, P. S. Ramanujam, S. Hvilsted, “Determination of the response time of photoanisotropy in azobenzene side-chain polyesters,” Opt. Commun. 182, 155–160 (2000).
[CrossRef]

1999

P. A. Blanche, P. C. Lemaire, M. Dumont, M. Fisher, “Photoinduced orientation of azo dye in various polymer matrices,” Opt. Lett. 24, 1349–1351 (1999).
[CrossRef]

F. L. Labarthet, P. Rochon, A. Natansohn, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999).
[CrossRef]

1998

1997

N. C. R. Holme, L. Nikolova, P. S. Ramanujam, S. Hvilsted, “An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1520 (1997).
[CrossRef]

1996

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujan, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef] [PubMed]

P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

1994

M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, V. Dragostinova, “Photoinduced dichroism and birefringence in films of mordant pure yellow/poly(vinyl alcohol): simultaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
[CrossRef]

T. Huang, K. H. Wagner, “Real-time joint transform correlation using photoanisotropic dye-polymer films,” Appl. Opt. 33, 7634–7645 (1994).
[CrossRef] [PubMed]

1993

1992

1989

1987

1986

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22, 1262–1267 (1986).
[CrossRef]

1985

1984

1974

S. D. Kakichashvili, “Method for phase polarization recording of holograms,” Sov. J. Quantum Electron. 4, 795–798 (1974).
[CrossRef]

Andruzzi, F.

Blanche, P. A.

Bublitz, D.

D. Bublitz, B. Fleck, L. Wenke, P. S. Ramanujam, S. Hvilsted, “Determination of the response time of photoanisotropy in azobenzene side-chain polyesters,” Opt. Commun. 182, 155–160 (2000).
[CrossRef]

Calixto, S.

Dragostinova, V.

M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, V. Dragostinova, “Photoinduced dichroism and birefringence in films of mordant pure yellow/poly(vinyl alcohol): simultaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22, 1262–1267 (1986).
[CrossRef]

Dumont, M.

Ebralidze, N. A.

Ebralidze, T. D.

Fisher, M.

Fleck, B.

D. Bublitz, B. Fleck, L. Wenke, P. S. Ramanujam, S. Hvilsted, “Determination of the response time of photoanisotropy in azobenzene side-chain polyesters,” Opt. Commun. 182, 155–160 (2000).
[CrossRef]

Holme, N. C. R.

I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257–1265 (1998).
[CrossRef]

N. C. R. Holme, L. Nikolova, P. S. Ramanujam, S. Hvilsted, “An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1520 (1997).
[CrossRef]

P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

Huang, T.

Hvilsted, S.

D. Bublitz, B. Fleck, L. Wenke, P. S. Ramanujam, S. Hvilsted, “Determination of the response time of photoanisotropy in azobenzene side-chain polyesters,” Opt. Commun. 182, 155–160 (2000).
[CrossRef]

I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257–1265 (1998).
[CrossRef]

N. C. R. Holme, L. Nikolova, P. S. Ramanujam, S. Hvilsted, “An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1520 (1997).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujan, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef] [PubMed]

P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

S. Hvilsted, F. Andruzzi, P. S. Ramanujam, “Side-chain liquid-crystalline polyesters for optical information storage,” Opt. Lett. 17, 1234–1236 (1992).
[CrossRef] [PubMed]

Ivanov, M.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujan, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef] [PubMed]

M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, V. Dragostinova, “Photoinduced dichroism and birefringence in films of mordant pure yellow/poly(vinyl alcohol): simultaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
[CrossRef]

Jääskeläinen, T.

T. Keinonen, S. Parkkonen, T. Jääskeläinen, “Low-power two-wave mixing in dry methylene-blue-sensitized gelatin films,” J. Mod. Opt. 45, 2561–2572 (1998).

Kakichashvili, S. D.

S. D. Kakichashvili, “Method for phase polarization recording of holograms,” Sov. J. Quantum Electron. 4, 795–798 (1974).
[CrossRef]

Keinonen, T.

T. Keinonen, S. Parkkonen, T. Jääskeläinen, “Low-power two-wave mixing in dry methylene-blue-sensitized gelatin films,” J. Mod. Opt. 45, 2561–2572 (1998).

Labarthet, F. L.

F. L. Labarthet, P. Rochon, A. Natansohn, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999).
[CrossRef]

Lemaire, P. C.

Lessard, R. A.

Mangaiyarkarasi, D.

D. Mangaiyarkarasi, P. K. Palanisamy, R. S. Sirohi, “Eosin dye soaked gelatin as a recording medium,” Opt. Eng. 39, 2138–2142 (2000).
[CrossRef]

Martinez-Ponce, G.

Mumladze, A. N.

Muric, B.

Natansohn, A.

F. L. Labarthet, P. Rochon, A. Natansohn, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999).
[CrossRef]

Naydenova, I.

Nikolova, L.

I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257–1265 (1998).
[CrossRef]

N. C. R. Holme, L. Nikolova, P. S. Ramanujam, S. Hvilsted, “An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1520 (1997).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujan, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef] [PubMed]

M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, V. Dragostinova, “Photoinduced dichroism and birefringence in films of mordant pure yellow/poly(vinyl alcohol): simultaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22, 1262–1267 (1986).
[CrossRef]

L. Nikolova, T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” J. Mod. Opt. 31, 579–588 (1984).

T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1. A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

Palanisamy, P. K.

D. Mangaiyarkarasi, P. K. Palanisamy, R. S. Sirohi, “Eosin dye soaked gelatin as a recording medium,” Opt. Eng. 39, 2138–2142 (2000).
[CrossRef]

Pantelic, D.

Parkkonen, S.

T. Keinonen, S. Parkkonen, T. Jääskeläinen, “Low-power two-wave mixing in dry methylene-blue-sensitized gelatin films,” J. Mod. Opt. 45, 2561–2572 (1998).

Ramanujam, P. S.

D. Bublitz, B. Fleck, L. Wenke, P. S. Ramanujam, S. Hvilsted, “Determination of the response time of photoanisotropy in azobenzene side-chain polyesters,” Opt. Commun. 182, 155–160 (2000).
[CrossRef]

I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257–1265 (1998).
[CrossRef]

N. C. R. Holme, L. Nikolova, P. S. Ramanujam, S. Hvilsted, “An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1520 (1997).
[CrossRef]

P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

S. Hvilsted, F. Andruzzi, P. S. Ramanujam, “Side-chain liquid-crystalline polyesters for optical information storage,” Opt. Lett. 17, 1234–1236 (1992).
[CrossRef] [PubMed]

Ramanujan, P. S.

Roberge, P. C.

Rochon, P.

F. L. Labarthet, P. Rochon, A. Natansohn, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999).
[CrossRef]

Sirohi, R. S.

D. Mangaiyarkarasi, P. K. Palanisamy, R. S. Sirohi, “Eosin dye soaked gelatin as a recording medium,” Opt. Eng. 39, 2138–2142 (2000).
[CrossRef]

Solano, C.

Todorov, T.

I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257–1265 (1998).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujan, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef] [PubMed]

M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, V. Dragostinova, “Photoinduced dichroism and birefringence in films of mordant pure yellow/poly(vinyl alcohol): simultaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22, 1262–1267 (1986).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1. A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

L. Nikolova, T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” J. Mod. Opt. 31, 579–588 (1984).

Tomova, N.

M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, V. Dragostinova, “Photoinduced dichroism and birefringence in films of mordant pure yellow/poly(vinyl alcohol): simultaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22, 1262–1267 (1986).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1. A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

Wagner, K. H.

Wenke, L.

D. Bublitz, B. Fleck, L. Wenke, P. S. Ramanujam, S. Hvilsted, “Determination of the response time of photoanisotropy in azobenzene side-chain polyesters,” Opt. Commun. 182, 155–160 (2000).
[CrossRef]

Appl. Opt.

C. Solano, R. A. Lessard, P. C. Roberge, “Methylene blue sensitized gelatin as a photosensitive medium for conventional and polarizing holography,” Appl. Opt. 26, 1989–1997 (1987).
[CrossRef] [PubMed]

C. Solano, “Malachite green photosensitive plates,” Appl. Opt. 28, 3524–3528 (1989).
[CrossRef] [PubMed]

D. Pantelic, B. Muric, “Improving the holographic sensitivity of dichromated gelatin in the blue-green part of the spectrum by sensitization with xanthene dyes,” Appl. Opt. 40, 2871–2875 (2001).
[CrossRef]

T. D. Ebralidze, N. A. Ebralidze, A. N. Mumladze, “Photoinduction of anisotropic grains in organic compounds,” Appl. Opt. 37, 6161–6163 (1998).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1. A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujan, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
[CrossRef] [PubMed]

S. Calixto, R. A. Lessard, “Holographic recording and reconstruction of polarized light with dyed plastic,” Appl. Opt. 23, 4313–4318 (1984).
[CrossRef] [PubMed]

G. Martinez-Ponce, C. Solano, “Induced and form birefringence in high-frequency polarization gratings,” Appl. Opt. 40, 3850–3854 (2001).
[CrossRef]

T. Huang, K. H. Wagner, “Real-time joint transform correlation using photoanisotropic dye-polymer films,” Appl. Opt. 33, 7634–7645 (1994).
[CrossRef] [PubMed]

T. Huang, K. H. Wagner, “Photoanisotropic incoherent to coherent optical conversion,” Appl. Opt. 32, 1888–1900 (1993).
[CrossRef] [PubMed]

C. Solano, R. A. Lessard, “Phase gratings formed by induced anisotropy in dyed gelatin plates,” Appl. Opt. 24, 1776–1779 (1985).
[CrossRef] [PubMed]

Appl. Phys. Lett.

F. L. Labarthet, P. Rochon, A. Natansohn, “Polarization analysis of diffracted orders from a birefringence grating recorded on azobenzene containing polymer,” Appl. Phys. Lett. 75, 1377–1379 (1999).
[CrossRef]

P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

N. C. R. Holme, L. Nikolova, P. S. Ramanujam, S. Hvilsted, “An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline azobenzene polyester,” Appl. Phys. Lett. 70, 1518–1520 (1997).
[CrossRef]

IEEE J. Quantum Electron.

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photoinduced anisotropy in rigid dye solutions for transient polarization holography,” IEEE J. Quantum Electron. 22, 1262–1267 (1986).
[CrossRef]

J. Mod. Opt.

L. Nikolova, T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” J. Mod. Opt. 31, 579–588 (1984).

T. Keinonen, S. Parkkonen, T. Jääskeläinen, “Low-power two-wave mixing in dry methylene-blue-sensitized gelatin films,” J. Mod. Opt. 45, 2561–2572 (1998).

J. Opt. Soc. Am. B

Opt. Commun.

D. Bublitz, B. Fleck, L. Wenke, P. S. Ramanujam, S. Hvilsted, “Determination of the response time of photoanisotropy in azobenzene side-chain polyesters,” Opt. Commun. 182, 155–160 (2000).
[CrossRef]

Opt. Eng.

D. Mangaiyarkarasi, P. K. Palanisamy, R. S. Sirohi, “Eosin dye soaked gelatin as a recording medium,” Opt. Eng. 39, 2138–2142 (2000).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

M. Ivanov, L. Nikolova, T. Todorov, N. Tomova, V. Dragostinova, “Photoinduced dichroism and birefringence in films of mordant pure yellow/poly(vinyl alcohol): simultaneous real-time investigations at two wavelengths,” Opt. Quantum Electron. 26, 1013–1018 (1994).
[CrossRef]

Sov. J. Quantum Electron.

S. D. Kakichashvili, “Method for phase polarization recording of holograms,” Sov. J. Quantum Electron. 4, 795–798 (1974).
[CrossRef]

Other

T. Huang, “Physics and applications of photoanisotropic organic volume holograms,” Ph.D. dissertation (University of Colorado, Boulder, Boulder, Colorado, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the holographic recording.

Fig. 2
Fig. 2

Polarization modulation over the observation plane when (a) two orthogonal linearly polarized beams and (b) two circularly polarized beams are superimposed; δ = 2πfx.

Fig. 3
Fig. 3

Phase modulation as a function of polarization distribution after dehydration.

Fig. 4
Fig. 4

Surface relief (dotted curve) simultaneously formed when a polarization grating is induced in a dyed-gelatin plate. The theoretically expected grating (solid curve) is drawn to make a comparison.

Fig. 5
Fig. 5

Diffraction pattern obtained when the phase gratings obtained after development of the polarization gratings formed by use of parallel linearly and circularly polarized beams, orthogonal linearly polarized beams, and orthogonal circularly polarized beams are illuminated.

Fig. 6
Fig. 6

Diffraction efficiency as a function of illumination of the angle of incidence for intensity gratings (thicker curve) and a polarization grating (thinner curve) after development. The frequencies of the predevelopment gratings are the same.

Fig. 7
Fig. 7

Same as Fig. 6. The frequency of the predeveloped intensity grating (thicker curve) is two times that of the polarization grating (thinner curve).

Tables (1)

Tables Icon

Table 1 Dehydration Process for Exposed Gelatin Plates

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

 x, y, z; t=ReE1x, y, z; t+E2x, y, z; t=ReE01 expjk1·r+E02 expjk2·rexp-jωt=px, zcosωt+qx, zsinωt,
nx2=n02+κL12+L22, ny2=n02-κL12+L22, nz2=n02+κL12-L22,
Li2=p2+q2±p2-q22-4p·q21/22, i=1, 2.
αi=·xˆLi, βi=·yˆLi, γi=·zˆLi,
MI=expi 2κn0cos2πfx00exp-i 2κn0cos2πfx,
Mc=cos2κn0+i sin2κn0cos2πfxi sin2κn0sin2πfxi sin2κn0sin2πfxcos2κn0-i sin2κn0cos2πfx,

Metrics