Abstract

We present a generalized holography-based approach with improved spatial resolution for extracting images, viewed through a scattering medium. The various angular directions are encoded either with different wavelengths or by capturing their corresponding images in different time slots. The various encoded images are recorded on a digital hologram with a computer. A digital reconstruction, which includes demodulation of the carrier beam and then a proper decoding algorithm, yields resolved images. The principle is demonstrated by recording image-plane digital holograms. Combining the suggested approach with the first-arriving light technique may further improve the results.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Leith, P. Naulleau, D. Dilworth, “Ensemble-averaged imaging through highly scattering media,” Opt. Lett. 21, 1691–1693 (1996).
    [CrossRef] [PubMed]
  2. P. Naulleau, E. Leith, H. Chen, B. Hoover, J. Lopez, “Time gated ensemble-averaged imaging through highly scattering media,” Appl. Opt. 36, 3889–3894 (1997).
    [CrossRef] [PubMed]
  3. E. N. Leith, B. G. Hoover, S. M. Grannell, K. P. Mills, H. S. Chen, D. S. Dilworth, “Realization of time gating by use of spatial filtering,” Appl. Opt. 38, 1370–1376 (1999).
    [CrossRef]
  4. M. P. Shih, H. S. Chen, E. N. Leith, “Spectral holography for coherent-gated imaging,” Opt. Lett. 24, 52–54 (1999).
    [CrossRef]
  5. J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiple scattered light,” Physical Review E 53, 1142–1155 (1996).
    [CrossRef]
  6. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).

1999

1997

1996

E. Leith, P. Naulleau, D. Dilworth, “Ensemble-averaged imaging through highly scattering media,” Opt. Lett. 21, 1691–1693 (1996).
[CrossRef] [PubMed]

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiple scattered light,” Physical Review E 53, 1142–1155 (1996).
[CrossRef]

Bashkansky, M.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiple scattered light,” Physical Review E 53, 1142–1155 (1996).
[CrossRef]

Battle, P. R.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiple scattered light,” Physical Review E 53, 1142–1155 (1996).
[CrossRef]

Chen, H.

Chen, H. S.

Dilworth, D.

Dilworth, D. S.

Duncan, M. D.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiple scattered light,” Physical Review E 53, 1142–1155 (1996).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).

Grannell, S. M.

Hoover, B.

Hoover, B. G.

Leith, E.

Leith, E. N.

Lopez, J.

Mahon, R.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiple scattered light,” Physical Review E 53, 1142–1155 (1996).
[CrossRef]

Mills, K. P.

Moon, J. A.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiple scattered light,” Physical Review E 53, 1142–1155 (1996).
[CrossRef]

Naulleau, P.

Reintjes, J.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiple scattered light,” Physical Review E 53, 1142–1155 (1996).
[CrossRef]

Shih, M. P.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Optical configuration used for the experiment. (b) Sketch used for the mathematical derivation.

Fig. 2
Fig. 2

Experimental results with nonsweeping Dye laser: (a) demodulated holographic recording, (b) reconstructed object.

Fig. 3
Fig. 3

Experimental results with sweeping Dye laser: (a) demodulated holographic recording, (b) reconstructed object.

Fig. 4
Fig. 4

Influence of the scattering medium on an image: (a) without temporal averaging and with the scattering medium, (b) after temporal averaging, (c) without the scattering medium.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

u1x=exp2πixλsin θ.
u2x=u1xexp-2πiν0x=exp2πixν0-sin θλ,
u3x  u2xexpπiλzx-x2dx= δν-ν0+sin θλexp-πiλzν2exp2πixνdν=exp-πiλzν0-sin θλ2exp2πixν0-sin θλ.
u3x  exp2πixλsinαλ.
ν0=sin θλ0.
α=sin-1sin θλλ0-1.
u4x0= u3xtxexp-2πixx0λfdx =exp-πiλzν0-sin θλ2δx0λf-ν0+sin θλ*Tx0 =exp-πiλzν0-sin θλ2Tx0-λfν0+f sin θ,
Tx0= txexp-2πixx0λfdx.
u5x0=u4x0δx0=exp-πiλzν0-sin θλ2×Tf sin θ1-λλ0δx0.
u6x=exp-πiλzν0-sin θλ2×Tf sin θ1-λλ0,
u6xexpπiλzν0-sin θλ2=Tf sin α=Tν tx= Tνexp2πixνdv.
Δx=fν0δλ,
δx=fν0Δλ.
δθ sin-4Δxf,

Metrics