Abstract

The research reported here focuses on ultrasound-modulated optical tomography based on parallel speckle detection. Four methods were investigated for signal acquisition and analysis, in which laser speckle statistics was applied. The methods were compared with the previously used four-phase method in the imaging of all-biological-tissue samples, in which the buried objects were also biological tissues. The image quality obtained with these methods was comparable with that obtained with the four-phase method; in addition, these methods have advantages in reducing acquisition time and improving the signal-to-noise ratio.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Kruger, P. Liu, “Photoacoustic ultrasound: theory,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 114–118 (1994).
  2. A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittle, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
    [CrossRef]
  3. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
    [CrossRef]
  4. L.-H. Wang, Q. Shen, “Sonoluminescence tomography of turbid media,” Opt. Lett. 23, 561–563 (1998).
    [CrossRef]
  5. F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 500–510 (1993).
    [CrossRef]
  6. L.-H. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
    [CrossRef] [PubMed]
  7. L.-H. Wang, X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
    [CrossRef]
  8. M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
    [CrossRef]
  9. L.-H. Wang, G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977 (1998).
    [CrossRef]
  10. S. Leveque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
    [CrossRef]
  11. G. Yao, L.-H. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39, 659–664 (2000).
    [CrossRef]
  12. G. Yao, S. Jiao, L.-H. Wang, “Frequency-swept ultrasound-modulated optical tomography in biological tissue by use of parallel detection,” Opt. Lett. 25, 734–736 (2000).
    [CrossRef]
  13. S. Leveque-Fort, “Three-dimensional acousto-optic imaging in biological tissues with parallel signal processing,” Appl. Opt. 40, 1029–1036 (2000).
    [CrossRef]
  14. A. Lev, Z. Kotler, B. G. Sfez, “Ultrasound tagged light imaging in turbid media in a reflectance geometry,” Opt. Lett. 25, 378–380 (2000).
    [CrossRef]
  15. E. Granot, A. Lev, Z. Kotler, B. G. Sfez, “Detection of inhomogeneities with ultrasound tagging of light,” J. Opt. Soc. Am. A 18, 1962–1967 (2001).
    [CrossRef]
  16. S. Leveque-Fort, J. Selb, L. Pottier, A. C. Boccara, “In situ local tissue characterization and imaging by backscattering acousto-optic imaging,” Opt. Commun. 196, 127–131 (2001).
    [CrossRef]
  17. W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
    [CrossRef]
  18. G. D. Mahan, W. E. Engler, J. J. Tiemann, E. Uzgiris, “Ultrasonic tagging of light: theory,” Proc. Natl. Acad. Sci. USA 95, 14,015–14,019 (1998).
    [CrossRef]
  19. L.-H. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 1–4 (2001).
    [CrossRef]
  20. L.-H. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26, 1191–1193 (2001).
    [CrossRef]
  21. J. Selb, S. Leveque-Fort, L. Pottier, C. Boccara, “Setup for simultaneous imaging of optical and acoustic contrasts in biological tissues,” in Biomedical Optoacoustics II, Alexander A. Oraevsky, ed., Proc. SPIE4256, 200–207 (2001).
    [CrossRef]
  22. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, Vol. 9 of Topics in Applied Physics, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984).

2001

S. Leveque-Fort, J. Selb, L. Pottier, A. C. Boccara, “In situ local tissue characterization and imaging by backscattering acousto-optic imaging,” Opt. Commun. 196, 127–131 (2001).
[CrossRef]

L.-H. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 1–4 (2001).
[CrossRef]

E. Granot, A. Lev, Z. Kotler, B. G. Sfez, “Detection of inhomogeneities with ultrasound tagging of light,” J. Opt. Soc. Am. A 18, 1962–1967 (2001).
[CrossRef]

L.-H. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26, 1191–1193 (2001).
[CrossRef]

2000

1999

1998

1997

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

L.-H. Wang, X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
[CrossRef]

1995

Boccara, A. C.

S. Leveque-Fort, J. Selb, L. Pottier, A. C. Boccara, “In situ local tissue characterization and imaging by backscattering acousto-optic imaging,” Opt. Commun. 196, 127–131 (2001).
[CrossRef]

S. Leveque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

Boccara, C.

J. Selb, S. Leveque-Fort, L. Pottier, C. Boccara, “Setup for simultaneous imaging of optical and acoustic contrasts in biological tissues,” in Biomedical Optoacoustics II, Alexander A. Oraevsky, ed., Proc. SPIE4256, 200–207 (2001).
[CrossRef]

Brooksby, G. W.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

de Mul, F. F. M.

Dekker, A.

Engler, W. E.

G. D. Mahan, W. E. Engler, J. J. Tiemann, E. Uzgiris, “Ultrasonic tagging of light: theory,” Proc. Natl. Acad. Sci. USA 95, 14,015–14,019 (1998).
[CrossRef]

Esenaliev, R. O.

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittle, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
[CrossRef]

Genack, A. Z.

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, Vol. 9 of Topics in Applied Physics, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984).

Granot, E.

Hoelen, C. G. A.

Jacques, S. L.

L.-H. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[CrossRef] [PubMed]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittle, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
[CrossRef]

Jiao, S.

Kempe, M.

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

Kotler, Z.

Kruger, R. A.

R. A. Kruger, P. Liu, “Photoacoustic ultrasound: theory,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 114–118 (1994).

Ku, G.

Larionov, M.

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

Lebec, M.

Leutz, W.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Lev, A.

Leveque, S.

Leveque-Fort, S.

S. Leveque-Fort, J. Selb, L. Pottier, A. C. Boccara, “In situ local tissue characterization and imaging by backscattering acousto-optic imaging,” Opt. Commun. 196, 127–131 (2001).
[CrossRef]

S. Leveque-Fort, “Three-dimensional acousto-optic imaging in biological tissues with parallel signal processing,” Appl. Opt. 40, 1029–1036 (2000).
[CrossRef]

J. Selb, S. Leveque-Fort, L. Pottier, C. Boccara, “Setup for simultaneous imaging of optical and acoustic contrasts in biological tissues,” in Biomedical Optoacoustics II, Alexander A. Oraevsky, ed., Proc. SPIE4256, 200–207 (2001).
[CrossRef]

Liu, P.

R. A. Kruger, P. Liu, “Photoacoustic ultrasound: theory,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 114–118 (1994).

Mahan, G. D.

G. D. Mahan, W. E. Engler, J. J. Tiemann, E. Uzgiris, “Ultrasonic tagging of light: theory,” Proc. Natl. Acad. Sci. USA 95, 14,015–14,019 (1998).
[CrossRef]

Maret, G.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Marks, F. A.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

Oraevsky, A. A.

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittle, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
[CrossRef]

Pongers, R.

Pottier, L.

S. Leveque-Fort, J. Selb, L. Pottier, A. C. Boccara, “In situ local tissue characterization and imaging by backscattering acousto-optic imaging,” Opt. Commun. 196, 127–131 (2001).
[CrossRef]

J. Selb, S. Leveque-Fort, L. Pottier, C. Boccara, “Setup for simultaneous imaging of optical and acoustic contrasts in biological tissues,” in Biomedical Optoacoustics II, Alexander A. Oraevsky, ed., Proc. SPIE4256, 200–207 (2001).
[CrossRef]

Saint-Jalmes, H.

Selb, J.

S. Leveque-Fort, J. Selb, L. Pottier, A. C. Boccara, “In situ local tissue characterization and imaging by backscattering acousto-optic imaging,” Opt. Commun. 196, 127–131 (2001).
[CrossRef]

J. Selb, S. Leveque-Fort, L. Pottier, C. Boccara, “Setup for simultaneous imaging of optical and acoustic contrasts in biological tissues,” in Biomedical Optoacoustics II, Alexander A. Oraevsky, ed., Proc. SPIE4256, 200–207 (2001).
[CrossRef]

Sfez, B. G.

Shen, Q.

Tiemann, J. J.

G. D. Mahan, W. E. Engler, J. J. Tiemann, E. Uzgiris, “Ultrasonic tagging of light: theory,” Proc. Natl. Acad. Sci. USA 95, 14,015–14,019 (1998).
[CrossRef]

Tittle, F. K.

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittle, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
[CrossRef]

Tomlinson, H. W.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

Uzgiris, E.

G. D. Mahan, W. E. Engler, J. J. Tiemann, E. Uzgiris, “Ultrasonic tagging of light: theory,” Proc. Natl. Acad. Sci. USA 95, 14,015–14,019 (1998).
[CrossRef]

Wang, L.-H.

Wang, L.-H. V.

L.-H. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26, 1191–1193 (2001).
[CrossRef]

L.-H. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 1–4 (2001).
[CrossRef]

Yao, G.

Zaslavsky, D.

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

Zhao, X.

Appl. Opt.

J. Opt. Soc. Am.

M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. 14, 1151–1158 (1997).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

S. Leveque-Fort, J. Selb, L. Pottier, A. C. Boccara, “In situ local tissue characterization and imaging by backscattering acousto-optic imaging,” Opt. Commun. 196, 127–131 (2001).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

L.-H. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 1–4 (2001).
[CrossRef]

Physica B

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Proc. Natl. Acad. Sci. USA

G. D. Mahan, W. E. Engler, J. J. Tiemann, E. Uzgiris, “Ultrasonic tagging of light: theory,” Proc. Natl. Acad. Sci. USA 95, 14,015–14,019 (1998).
[CrossRef]

Other

J. Selb, S. Leveque-Fort, L. Pottier, C. Boccara, “Setup for simultaneous imaging of optical and acoustic contrasts in biological tissues,” in Biomedical Optoacoustics II, Alexander A. Oraevsky, ed., Proc. SPIE4256, 200–207 (2001).
[CrossRef]

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, Vol. 9 of Topics in Applied Physics, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984).

R. A. Kruger, P. Liu, “Photoacoustic ultrasound: theory,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 114–118 (1994).

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittle, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
[CrossRef]

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: T, transducer; AMP, power amplifier; FG, function generator; PC, personal computer.

Fig. 2
Fig. 2

2D images of 15-mm-thick chicken breast tissue in which two gizzard objects were buried. The images were obtained with the (a) four-phase, (b) three-phase, (c) two-phase I, (d) two-phase II, and (e) cross-correlation I methods, and with (f) dc signals.

Fig. 3
Fig. 3

Comparison of 1D images: (a) obtained from four-phase, three-phase, and two-phase methods, as well as an image from the dc signals; (b) from the cross-correlation coefficients, which were obtained from the various combinations of two different phase-delay acquisitions.

Fig. 4
Fig. 4

Comparison of images obtained with the four-phase, two-phase, and cross-correlation methods, respectively. The exposure time in the two-phase and cross-correlation methods was doubled.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

I=Idc+Iac cosϕs+ϕ,
I1=Idc+Iac cos ϕs,
I2=Idc+Iac sin ϕs,
I3=Idc-Iac cos ϕs,
I4=Idc-Iac sin ϕs.
Idc=I1+I2+I3+I4/4,
Iac=I1-I32+I2-I421/2.
Idc=I1+I3/2,
Iac=I1-I32+2I2-I1-I321/2
Idc=I2+I4/2,
Iac=I2-I42+2I3-I2-I421/2
Idc=I1+I3/2.
4Iac2 cos2ϕs=I1-I32.
cos2 ϕs=1/2.
Iac2= I1-I32/2.
M Iac21/2/ Idc= I1-I32/21/2/ I1+I3/2.
M Iac21/2/ Idc=I2-I42/21/2/ I2+I4/2.
I12= Idc2+ Iac2/2,
MIac2/ Idc21/2=2I12/ Idc2-11/2,
MIac2/ Idc21/2=2I32/ Idc2-11/2,
MIac2/ Idc21/2=2I22/ Idc2-11/2,
MIac2/ Idc21/2=2I42/ Idc2-11/2,
Rm,n=i=1NIm,i-ImIn,i-Ini=1NIm,i-Im2i=1NIn,i-In21/2,

Metrics