Abstract

We describe a two-dimensional optical coherence tomography technique with which we were able to obtain multiple longitudinal slices of a biological sample directly in a single Z scan. The system is based on a femtosecond Cr4+:forsterite laser and an infrared camera for wide-field imaging of the sample with a depth resolution of 5 µm. With this imaging apparatus we were able to investigate human skin and mouse ear samples and to observe the different constitutive tissues.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
    [CrossRef]
  3. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  4. T. Dresel, G. Häusler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
    [CrossRef] [PubMed]
  5. L. Kay, A. Podoleanu, M. Seeger, C. J. Solomon, “A new approach to the measurement and analysis of impact craters,” Int. J. Impact. Eng. 19, 739–753 (1997).
    [CrossRef]
  6. S. Bourquin, P. Seitz, R. P. Salathé, “Optical coherence tomography based on a two-dimensional smart detector array,” Opt. Lett. 26, 512–514 (2001).
    [CrossRef]
  7. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, “Full-field optical coherence tomography,” Opt. Lett. 23, 244–246 (1998).
    [CrossRef]
  8. G. Jonusauskas, J. Oberlé, C. Rullière, “54-fs, 1-GW, 1-kHz pulse amplification in Cr:forsterite,” Opt. Lett. 23, 1918–1921 (1998).
    [CrossRef]
  9. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
    [CrossRef] [PubMed]
  10. E. Abraham, E. Bordenave, N. Tsurumachi, G. Jonusauskas, J. Oberlé, C. Rullière, “Real-time two-dimensional imaging in scattering media by use of a femtosecond Cr4+:forsterite laser,” Opt. Lett. 25, 929–931 (2000).
    [CrossRef]
  11. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
    [CrossRef] [PubMed]
  12. S. K. Gayen, M. E. Zevallos, M. Alrubaiee, J. M. Evans, R. R. Alfano, “Two-dimensional near-infrared transillumination imaging of biomedical media with a chromium-doped forsterite laser,” Appl. Opt. 37, 5327–5336 (1998).
    [CrossRef]
  13. T. Kreis, Holographic Interferometry: Principles and Methods (Akademie Verlag, Berlin, 1996).
  14. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express3, 219–229 (1998), http://www.opticsexpress.org .
    [CrossRef]
  15. A. Gh. Podoleanu, J. A. Rogers, D. A. Jackson, “Three-dimensional OCT images from retina and skin,” Opt. Express 7, 292–298 (2000), http://www.opticsexpress.org .
    [CrossRef]

2001 (1)

2000 (2)

1999 (2)

1998 (3)

1997 (1)

L. Kay, A. Podoleanu, M. Seeger, C. J. Solomon, “A new approach to the measurement and analysis of impact craters,” Int. J. Impact. Eng. 19, 739–753 (1997).
[CrossRef]

1996 (2)

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Abraham, E.

Alfano, R. R.

Alrubaiee, M.

Beaurepaire, E.

Bilinsky, I. P.

Blanchot, L.

Boccara, A. C.

Boppart, S. A.

Bordenave, E.

Bouma, B. E.

Bourquin, S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Dresel, T.

Drexler, W.

Evans, J. M.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gayen, S. K.

Golubovic, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Häusler, G.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Jackson, D. A.

Jonusauskas, G.

Kärtner, F. X.

Kay, L.

L. Kay, A. Podoleanu, M. Seeger, C. J. Solomon, “A new approach to the measurement and analysis of impact craters,” Int. J. Impact. Eng. 19, 739–753 (1997).
[CrossRef]

Kreis, T.

T. Kreis, Holographic Interferometry: Principles and Methods (Akademie Verlag, Berlin, 1996).

Lebec, M.

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Morgner, U.

Oberlé, J.

Pitris, C.

Podoleanu, A.

L. Kay, A. Podoleanu, M. Seeger, C. J. Solomon, “A new approach to the measurement and analysis of impact craters,” Int. J. Impact. Eng. 19, 739–753 (1997).
[CrossRef]

Podoleanu, A. Gh.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rogers, J. A.

Rullière, C.

Saint-Jalmes, H.

Salathé, R. P.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Seeger, M.

L. Kay, A. Podoleanu, M. Seeger, C. J. Solomon, “A new approach to the measurement and analysis of impact craters,” Int. J. Impact. Eng. 19, 739–753 (1997).
[CrossRef]

Seitz, P.

Solomon, C. J.

L. Kay, A. Podoleanu, M. Seeger, C. J. Solomon, “A new approach to the measurement and analysis of impact craters,” Int. J. Impact. Eng. 19, 739–753 (1997).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Tsurumachi, N.

Venzke, H.

Zevallos, M. E.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Int. J. Impact. Eng. (1)

L. Kay, A. Podoleanu, M. Seeger, C. J. Solomon, “A new approach to the measurement and analysis of impact craters,” Int. J. Impact. Eng. 19, 739–753 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

T. Kreis, Holographic Interferometry: Principles and Methods (Akademie Verlag, Berlin, 1996).

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express3, 219–229 (1998), http://www.opticsexpress.org .
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: DL, delay line; BS, 50/50 beam splitter; L1, lens; M, mirror on a piezoelectric translation stage.

Fig. 2
Fig. 2

Main window of the home-made software developed to visualize the en face images (XY image) and the longitudinal slices (XZ and YZ images) of the biological sample under study. The X, Y, Z cursors allow the selection of the different slices.

Fig. 3
Fig. 3

(a) Image of a U.S. Air Force test pattern with the wide-field OCT imaging setup. The illuminated area is approximately 2 mm × 2 m; the transverse resolution is 35 µm. (b) Intensity profile of a longitudinal slice with a mirror as an object; the longitudinal resolution is 5 µm.

Fig. 4
Fig. 4

Images of an ex vivo specimen of human breast skin: (a) HE histology. (b) Wide-field OCT image of nearly the same area as the HE histology; (c) linear-depth profile of the wide-field OCT image along the dotted line on (b). The sizes of the images are 2.25 mm × 1.2 mm and 530 µm × 400 µm for (a) and (b), respectively. See text for other definitions.

Fig. 5
Fig. 5

Images of an ex vivo mouse ear: (a) HE histology; (b) Wide-field OCT image of nearly the same area as the HE histology. The image sizes are 700 µm × 930 µm and 750 µm × 1000 µm for (a) and (b), respectively; (c) 3D reconstruction of the mouse-ear sample, the slice described in (b) is represented by the black rectangle. See text for other definitions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I=2 I0-Iπ2 +Iπ/2-I3π/221/2I0+Iπ/2+Iπ+I3π/2,

Metrics