Abstract

We describe use of a phase-sensitive low-coherence reflectometer to measure spatial variation of refractive index in optical materials. The described interferometric technique is demonstrated to be a valuable tool to profile the refractive index of optical elements such as integrated waveguides and photowritten optical microstructures. As an example, a refractive-index profile is mapped of a microstructure written in a microscope glass slide with an ultrashort-pulse laser.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. E. N. Glezer, E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
    [CrossRef]
  3. C. B. Schaffer, A. Brodeur, J. F. Garcia, E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001).
    [CrossRef]
  4. K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
    [CrossRef]
  5. D. Homoelle, S. Wielandy, A. Gaeta, N. F. Borrelli, C. Smith, “Infrared photosensitivity in slica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311–1313 (1999).
    [CrossRef]
  6. L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
    [CrossRef]
  7. H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
    [CrossRef]
  8. A. M. Streltsov, N. F. Borrelli, “Fabrication and analysis of directional coupler written in glass with femtosecond pulses,” Opt. Lett. 26, 42–43 (2001).
    [CrossRef]
  9. K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling: state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
    [CrossRef]
  10. P. Oberson, B. Gisin, B. Huttner, N. Gisin, “Refracted near-filed measurements of refractive index and geometry on silica-on-silicon integrated waveguides,” Appl. Opt. 37, 7268–7272 (1998).
    [CrossRef]
  11. D. P. Davé, T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25, 227–229 (2000).
    [CrossRef]
  12. D. P. Davé, T. Akkin, T. E. Milner, H. G. Rylander, “Phase-sensitive frequency-multiplexed optical low-coherence reflectometry,” Opt. Commun. 193, 39–43 (2001).
    [CrossRef]

2001

2000

1999

D. Homoelle, S. Wielandy, A. Gaeta, N. F. Borrelli, C. Smith, “Infrared photosensitivity in slica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311–1313 (1999).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

1998

1997

K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

E. N. Glezer, E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[CrossRef]

1996

1989

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling: state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Akkin, T.

D. P. Davé, T. Akkin, T. E. Milner, H. G. Rylander, “Phase-sensitive frequency-multiplexed optical low-coherence reflectometry,” Opt. Commun. 193, 39–43 (2001).
[CrossRef]

Baines, J. G. N.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling: state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Borrelli, N. F.

Brodeur, A.

Davé, D. P.

D. P. Davé, T. Akkin, T. E. Milner, H. G. Rylander, “Phase-sensitive frequency-multiplexed optical low-coherence reflectometry,” Opt. Commun. 193, 39–43 (2001).
[CrossRef]

D. P. Davé, T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25, 227–229 (2000).
[CrossRef]

Davis, K. M.

Franco, M.

L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Gaeta, A.

Garcia, J. F.

Gisin, B.

Gisin, N.

Glezer, E. N.

E. N. Glezer, E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[CrossRef]

Hirao, K.

K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[CrossRef] [PubMed]

Homoelle, D.

Huttner, B.

Inouye, H.

K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Juodkazis, S.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Matsuo, S.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Mazur, E.

C. B. Schaffer, A. Brodeur, J. F. Garcia, E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001).
[CrossRef]

E. N. Glezer, E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[CrossRef]

Milner, T. E.

D. P. Davé, T. Akkin, T. E. Milner, H. G. Rylander, “Phase-sensitive frequency-multiplexed optical low-coherence reflectometry,” Opt. Commun. 193, 39–43 (2001).
[CrossRef]

D. P. Davé, T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25, 227–229 (2000).
[CrossRef]

Misawa, H.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Mitsuyu, T.

K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Miura, K.

K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[CrossRef] [PubMed]

Mysyrowicz, A.

L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Nishi, J.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Oberson, P.

Prade, B.

L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Putland, D. E.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling: state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Qui, J.

K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Raine, K. W.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling: state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Rylander, H. G.

D. P. Davé, T. Akkin, T. E. Milner, H. G. Rylander, “Phase-sensitive frequency-multiplexed optical low-coherence reflectometry,” Opt. Commun. 193, 39–43 (2001).
[CrossRef]

Schaffer, C. B.

Smith, C.

Streltsov, A. M.

Sudrie, L.

L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Sugimoto, N.

Sun, H. B.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Sun, K.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Suzuki, Y.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Wielandy, S.

Xu, Y.

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

E. N. Glezer, E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[CrossRef]

K. Miura, J. Qui, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

J. Lightwave Technol.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling: state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Opt. Commun.

D. P. Davé, T. Akkin, T. E. Milner, H. G. Rylander, “Phase-sensitive frequency-multiplexed optical low-coherence reflectometry,” Opt. Commun. 193, 39–43 (2001).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Opt. Lett.

Other

H. B. Sun, Y. Xu, S. Juodkazis, K. Sun, J. Nishi, Y. Suzuki, S. Matsuo, H. Misawa, “Photonic lattices achieved with high-power femtosecond laser microexplosion in transparent solid materials,” in High-Power Lasers in Manufacturing, Proc. SPIE3888, 131–142 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the optical setup in the sample path for refractive-index profiling.

Fig. 2
Fig. 2

Two-dimensional phase profiles of the index-modified structure in a microscope slide: (a)–(c) measured with phase-sensitive OLCR; (b) and (c) gray-scale and contour maps, respectively, of a portion of (a) (600 µm along the y axis, i.e., the direction in which the structure was written); (d) DIC image.

Fig. 3
Fig. 3

Composite differential phase profile, Δϕ(z), of a single line scan.

Fig. 4
Fig. 4

Refractive-index profile Δn(z) of a single line scan.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Inz  2RrefzRsamp*zexp-az-z0/c2 ×cosf0z/c+ϕm+φN; m=1, 2,
Δϕz=ϕ1z-ϕ2z=4πλ00lz nx, zdx-n0lz=4πlzλ0nz¯-n0,

Metrics