Abstract

A tapered, metal-coated, optical fiber probe will elongate when heated by light input through a fiber. The induced motion can be used for data storage or nanostructuring of a surface. The elongation produced by this alignment-free system is measured with force feedback in a near-field scanning optical microscope (NSOM). The input light intensity controls the elongation magnitude, which ranges from a few nanometers to more than 100 nm. A 0.5-mW input energy yields ∼20 nm of probe elongation. The elongation quantified here can create artifacts in any experiment using pulsed laser light with a NSOM or an atomic force microscope.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Eigler, E. K. Schweizer, “Positioning single atoms with a scanning tunneling microscope,” Nature 344, 524–526 (1990).
    [CrossRef]
  2. Ph. Avouris, I.-W. Lyo, Y. Hasegawa, “Scanning tunneling microscope tip-sample interactions: atomic modification of Si and nanometer Si Schottky diodes,” J. Vac. Sci. Technol. A 11, 1725–1732 (1993).
    [CrossRef]
  3. L. J. Whitman, J. A. Stroscio, R. A. Dragoset, R. J. Celotta, “Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope,” Science 251, 1206–1210 (1991).
    [CrossRef] [PubMed]
  4. H. J. Mamin, P. H. Guethner, D. Rugar, “Atomic emission from a gold scanning-tunneling-microscope tip,” Phys. Rev. Lett. 65, 2418–2421 (1990).
    [CrossRef] [PubMed]
  5. H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Gold-silicon interface modification studies,” J. Vac. Sci. Technol. B 9, 585–589 (1991).
    [CrossRef]
  6. H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Hot electron interactions at the passivated gold-silicon interface,” Phys. Rev. Lett. 69, 2931–2934 (1992).
    [CrossRef] [PubMed]
  7. C. R. K. Marrian, E. A. Dobisz, John A. Dagata, “Electron-beam lithography with the scanning tunneling microscope,” J. Vac. Sci. Technol. B 10, 2877–2881 (1992).
    [CrossRef]
  8. S. Rubel, M. Trochet, E. E. Ehrichs, W. F. Smith, A. L. de Lozanne, “Nanofabrication and rapid imaging with a scanning tunneling microscope,” J. Vac. Sci. Technol. B 12, 1894–1897 (1994).
    [CrossRef]
  9. R. S. Becker, G. S. Higashi, Y. J. Chabel, A. J. Becker, “Atomic-scale conversion of clean Si(111):H-1 × 1 to Si(111)-2 × 1 by electron-stimulated desorption,” Phys. Rev. Lett. 65, 1917–1920 (1990).
    [CrossRef] [PubMed]
  10. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
    [CrossRef]
  11. S. Madsen, M. Müllenborn, K. Birkelund, F. Grey, “Optical near-field lithography on hydrogen-passivated silicon surfaces,” Appl. Phys. Lett. 69, 544–546 (1996).
    [CrossRef]
  12. P. K Wei, R. Hang, J. H. Hsu, S. H. Lin, W. S. Fann, B. R. Hsieh, “Two-dimensional near-field intensity distribution of tapered fiber probes,” Opt. Lett. 21, 1876–1878 (1996).
    [CrossRef]
  13. S. H. Huerth, M. P. Taylor, H. D. Hallen, B. H. Moeckly, “Electromigration in YBCO using a metal clad near-field scanning optical microscope probe,” Appl. Phys. Lett. 77, 2127–2129 (2000).
    [CrossRef]
  14. S. Hong, C. A. Mirkin, “A nanoplotter with both parallel and serial writing capabilities,” Science 288, 1808–1811 (2000).
    [CrossRef] [PubMed]
  15. H. J. Mamin, D. Rugar, “Thermomechanical writing with an atomic force microscope tip,” Appl. Phys. Lett. 61, 1003–1005 (1992).
    [CrossRef]
  16. S. Hoen, H. J. Mamin, D. Rugar, “Thermomechanical data storage using a fiber optic stylus,” Appl. Phys. Lett. 64, 267–269 (1994).
    [CrossRef]
  17. D. Zeisel, S. Nettesheim, B. Dutoit, R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996).
    [CrossRef]
  18. A. H. La Rosa, B. I. Yakobson, H. D. Hallen, “Origins and effects of thermal processes on near-field optical probes,” Appl. Phys. Lett. 67, 2597–2599 (1995).
    [CrossRef]
  19. P. G. Gucciardi, M. Colocci, M. Labardi, M. Allegrini, “Thermal-expansion effects in near-field optical microscopy fiber probes induced by laser light absorption,” Appl. Phys. Lett 75, 3408–3410 (1999).
    [CrossRef]
  20. V. Gerstner, A. Thon, W. Pfeiffer, “Thermal effects in pulsed laser assisted scanning tunneling microscopy,” J. Appl. Phys. 87, 2574–2580 (2000).
    [CrossRef]
  21. B. I. Yakobson, A. La Rosa, H. D. Hallen, M. A. Paesler, “Thermal/optical effect in NSOM probes,” Ultramicroscopy 61, 179–185 (1995).
    [CrossRef]
  22. M. Stähelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Gränacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
    [CrossRef]
  23. M. A. Paesler, P. J. Moyer, Near-Field Optics: Theory, Instrumentation and Applications (Wiley, New York, 1996).
  24. J.-B. Xu, K. Lauger, R. Moller, K. Dransfeld, I. H. Wilson, “Heat transfer between two metallic surfaces at small distances,” J. Appl. Phys. 76, 7209–7216 (1994).
    [CrossRef]
  25. E. Betzig, R. J. Chichester, F. Lanni, D. L. Taylor, “Near-field fluorescence imaging of cytoskeletal actin,” Bioimaging 1, 129–135 (1993).
    [CrossRef]
  26. J. Hwang, L. K. Tamm, C. Böhm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
    [CrossRef] [PubMed]
  27. P. J. Moyer, K. Walzer, M. Hietschold, “Modification of the optical properties of liquid crystals using near-field scanning optical microscopy,” Appl. Phys. Lett. 67, 2129–2131 (1995).
    [CrossRef]
  28. A. La Rosa, H. D. Hallen, “Heat effects on the performance of near-field scanning optical microscopy probes as Fabry-Perot mirrors,” presented at the American Physical Society Northwest Section Annual Meeting, Eugene, Oreg., 19–20 May 2000.
  29. B. Biehler, “Characterization of thermal probe elongation in near-field optical microscopy,” M.S. thesis (Physics Department, Portland State University, Portland, Oreg., 2001).
  30. G. Binnig, M. Despont, U. Drechsler, W. Hberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, T. W. Kenny, “Ultrahigh-density atomic force microscopy data storage with erase capability,” Appl. Phys. Lett. 74, 1329–1331 (1999).
    [CrossRef]
  31. M. I. Lutwyche, M. Despont, U. Drechsler, U. Drig, W. Hberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77, 3299–3301 (2000).
    [CrossRef]
  32. D. I. Kavaldjiev, R. Toledo-Crow, M. Vaez-Iravani, “On the heating of the fiber tip in a near-field scanning optical microscope,” Appl. Phys. Lett. 67, 2771–2773 (1995).
    [CrossRef]

2000 (4)

S. H. Huerth, M. P. Taylor, H. D. Hallen, B. H. Moeckly, “Electromigration in YBCO using a metal clad near-field scanning optical microscope probe,” Appl. Phys. Lett. 77, 2127–2129 (2000).
[CrossRef]

S. Hong, C. A. Mirkin, “A nanoplotter with both parallel and serial writing capabilities,” Science 288, 1808–1811 (2000).
[CrossRef] [PubMed]

V. Gerstner, A. Thon, W. Pfeiffer, “Thermal effects in pulsed laser assisted scanning tunneling microscopy,” J. Appl. Phys. 87, 2574–2580 (2000).
[CrossRef]

M. I. Lutwyche, M. Despont, U. Drechsler, U. Drig, W. Hberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77, 3299–3301 (2000).
[CrossRef]

1999 (2)

P. G. Gucciardi, M. Colocci, M. Labardi, M. Allegrini, “Thermal-expansion effects in near-field optical microscopy fiber probes induced by laser light absorption,” Appl. Phys. Lett 75, 3408–3410 (1999).
[CrossRef]

G. Binnig, M. Despont, U. Drechsler, W. Hberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, T. W. Kenny, “Ultrahigh-density atomic force microscopy data storage with erase capability,” Appl. Phys. Lett. 74, 1329–1331 (1999).
[CrossRef]

1996 (4)

M. Stähelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Gränacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
[CrossRef]

S. Madsen, M. Müllenborn, K. Birkelund, F. Grey, “Optical near-field lithography on hydrogen-passivated silicon surfaces,” Appl. Phys. Lett. 69, 544–546 (1996).
[CrossRef]

P. K Wei, R. Hang, J. H. Hsu, S. H. Lin, W. S. Fann, B. R. Hsieh, “Two-dimensional near-field intensity distribution of tapered fiber probes,” Opt. Lett. 21, 1876–1878 (1996).
[CrossRef]

D. Zeisel, S. Nettesheim, B. Dutoit, R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996).
[CrossRef]

1995 (5)

A. H. La Rosa, B. I. Yakobson, H. D. Hallen, “Origins and effects of thermal processes on near-field optical probes,” Appl. Phys. Lett. 67, 2597–2599 (1995).
[CrossRef]

B. I. Yakobson, A. La Rosa, H. D. Hallen, M. A. Paesler, “Thermal/optical effect in NSOM probes,” Ultramicroscopy 61, 179–185 (1995).
[CrossRef]

J. Hwang, L. K. Tamm, C. Böhm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

P. J. Moyer, K. Walzer, M. Hietschold, “Modification of the optical properties of liquid crystals using near-field scanning optical microscopy,” Appl. Phys. Lett. 67, 2129–2131 (1995).
[CrossRef]

D. I. Kavaldjiev, R. Toledo-Crow, M. Vaez-Iravani, “On the heating of the fiber tip in a near-field scanning optical microscope,” Appl. Phys. Lett. 67, 2771–2773 (1995).
[CrossRef]

1994 (3)

J.-B. Xu, K. Lauger, R. Moller, K. Dransfeld, I. H. Wilson, “Heat transfer between two metallic surfaces at small distances,” J. Appl. Phys. 76, 7209–7216 (1994).
[CrossRef]

S. Hoen, H. J. Mamin, D. Rugar, “Thermomechanical data storage using a fiber optic stylus,” Appl. Phys. Lett. 64, 267–269 (1994).
[CrossRef]

S. Rubel, M. Trochet, E. E. Ehrichs, W. F. Smith, A. L. de Lozanne, “Nanofabrication and rapid imaging with a scanning tunneling microscope,” J. Vac. Sci. Technol. B 12, 1894–1897 (1994).
[CrossRef]

1993 (2)

Ph. Avouris, I.-W. Lyo, Y. Hasegawa, “Scanning tunneling microscope tip-sample interactions: atomic modification of Si and nanometer Si Schottky diodes,” J. Vac. Sci. Technol. A 11, 1725–1732 (1993).
[CrossRef]

E. Betzig, R. J. Chichester, F. Lanni, D. L. Taylor, “Near-field fluorescence imaging of cytoskeletal actin,” Bioimaging 1, 129–135 (1993).
[CrossRef]

1992 (4)

H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Hot electron interactions at the passivated gold-silicon interface,” Phys. Rev. Lett. 69, 2931–2934 (1992).
[CrossRef] [PubMed]

C. R. K. Marrian, E. A. Dobisz, John A. Dagata, “Electron-beam lithography with the scanning tunneling microscope,” J. Vac. Sci. Technol. B 10, 2877–2881 (1992).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

H. J. Mamin, D. Rugar, “Thermomechanical writing with an atomic force microscope tip,” Appl. Phys. Lett. 61, 1003–1005 (1992).
[CrossRef]

1991 (2)

L. J. Whitman, J. A. Stroscio, R. A. Dragoset, R. J. Celotta, “Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope,” Science 251, 1206–1210 (1991).
[CrossRef] [PubMed]

H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Gold-silicon interface modification studies,” J. Vac. Sci. Technol. B 9, 585–589 (1991).
[CrossRef]

1990 (3)

D. M. Eigler, E. K. Schweizer, “Positioning single atoms with a scanning tunneling microscope,” Nature 344, 524–526 (1990).
[CrossRef]

H. J. Mamin, P. H. Guethner, D. Rugar, “Atomic emission from a gold scanning-tunneling-microscope tip,” Phys. Rev. Lett. 65, 2418–2421 (1990).
[CrossRef] [PubMed]

R. S. Becker, G. S. Higashi, Y. J. Chabel, A. J. Becker, “Atomic-scale conversion of clean Si(111):H-1 × 1 to Si(111)-2 × 1 by electron-stimulated desorption,” Phys. Rev. Lett. 65, 1917–1920 (1990).
[CrossRef] [PubMed]

Allegrini, M.

P. G. Gucciardi, M. Colocci, M. Labardi, M. Allegrini, “Thermal-expansion effects in near-field optical microscopy fiber probes induced by laser light absorption,” Appl. Phys. Lett 75, 3408–3410 (1999).
[CrossRef]

Avouris, Ph.

Ph. Avouris, I.-W. Lyo, Y. Hasegawa, “Scanning tunneling microscope tip-sample interactions: atomic modification of Si and nanometer Si Schottky diodes,” J. Vac. Sci. Technol. A 11, 1725–1732 (1993).
[CrossRef]

Becker, A. J.

R. S. Becker, G. S. Higashi, Y. J. Chabel, A. J. Becker, “Atomic-scale conversion of clean Si(111):H-1 × 1 to Si(111)-2 × 1 by electron-stimulated desorption,” Phys. Rev. Lett. 65, 1917–1920 (1990).
[CrossRef] [PubMed]

Becker, R. S.

R. S. Becker, G. S. Higashi, Y. J. Chabel, A. J. Becker, “Atomic-scale conversion of clean Si(111):H-1 × 1 to Si(111)-2 × 1 by electron-stimulated desorption,” Phys. Rev. Lett. 65, 1917–1920 (1990).
[CrossRef] [PubMed]

Betzig, E.

J. Hwang, L. K. Tamm, C. Böhm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

E. Betzig, R. J. Chichester, F. Lanni, D. L. Taylor, “Near-field fluorescence imaging of cytoskeletal actin,” Bioimaging 1, 129–135 (1993).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Biehler, B.

B. Biehler, “Characterization of thermal probe elongation in near-field optical microscopy,” M.S. thesis (Physics Department, Portland State University, Portland, Oreg., 2001).

Binnig, G.

G. Binnig, M. Despont, U. Drechsler, W. Hberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, T. W. Kenny, “Ultrahigh-density atomic force microscopy data storage with erase capability,” Appl. Phys. Lett. 74, 1329–1331 (1999).
[CrossRef]

Binnig, G. K.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Drig, W. Hberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77, 3299–3301 (2000).
[CrossRef]

Birkelund, K.

S. Madsen, M. Müllenborn, K. Birkelund, F. Grey, “Optical near-field lithography on hydrogen-passivated silicon surfaces,” Appl. Phys. Lett. 69, 544–546 (1996).
[CrossRef]

Böhm, C.

J. Hwang, L. K. Tamm, C. Böhm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

Bopp, M. A.

M. Stähelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Gränacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
[CrossRef]

Buhrman, R. A.

H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Hot electron interactions at the passivated gold-silicon interface,” Phys. Rev. Lett. 69, 2931–2934 (1992).
[CrossRef] [PubMed]

H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Gold-silicon interface modification studies,” J. Vac. Sci. Technol. B 9, 585–589 (1991).
[CrossRef]

Celotta, R. J.

L. J. Whitman, J. A. Stroscio, R. A. Dragoset, R. J. Celotta, “Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope,” Science 251, 1206–1210 (1991).
[CrossRef] [PubMed]

Chabel, Y. J.

R. S. Becker, G. S. Higashi, Y. J. Chabel, A. J. Becker, “Atomic-scale conversion of clean Si(111):H-1 × 1 to Si(111)-2 × 1 by electron-stimulated desorption,” Phys. Rev. Lett. 65, 1917–1920 (1990).
[CrossRef] [PubMed]

Chichester, R. J.

E. Betzig, R. J. Chichester, F. Lanni, D. L. Taylor, “Near-field fluorescence imaging of cytoskeletal actin,” Bioimaging 1, 129–135 (1993).
[CrossRef]

Chui, B. W.

G. Binnig, M. Despont, U. Drechsler, W. Hberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, T. W. Kenny, “Ultrahigh-density atomic force microscopy data storage with erase capability,” Appl. Phys. Lett. 74, 1329–1331 (1999).
[CrossRef]

Colocci, M.

P. G. Gucciardi, M. Colocci, M. Labardi, M. Allegrini, “Thermal-expansion effects in near-field optical microscopy fiber probes induced by laser light absorption,” Appl. Phys. Lett 75, 3408–3410 (1999).
[CrossRef]

Dagata, John A.

C. R. K. Marrian, E. A. Dobisz, John A. Dagata, “Electron-beam lithography with the scanning tunneling microscope,” J. Vac. Sci. Technol. B 10, 2877–2881 (1992).
[CrossRef]

de Lozanne, A. L.

S. Rubel, M. Trochet, E. E. Ehrichs, W. F. Smith, A. L. de Lozanne, “Nanofabrication and rapid imaging with a scanning tunneling microscope,” J. Vac. Sci. Technol. B 12, 1894–1897 (1994).
[CrossRef]

Despont, M.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Drig, W. Hberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77, 3299–3301 (2000).
[CrossRef]

G. Binnig, M. Despont, U. Drechsler, W. Hberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, T. W. Kenny, “Ultrahigh-density atomic force microscopy data storage with erase capability,” Appl. Phys. Lett. 74, 1329–1331 (1999).
[CrossRef]

Dobisz, E. A.

C. R. K. Marrian, E. A. Dobisz, John A. Dagata, “Electron-beam lithography with the scanning tunneling microscope,” J. Vac. Sci. Technol. B 10, 2877–2881 (1992).
[CrossRef]

Dragoset, R. A.

L. J. Whitman, J. A. Stroscio, R. A. Dragoset, R. J. Celotta, “Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope,” Science 251, 1206–1210 (1991).
[CrossRef] [PubMed]

Dransfeld, K.

J.-B. Xu, K. Lauger, R. Moller, K. Dransfeld, I. H. Wilson, “Heat transfer between two metallic surfaces at small distances,” J. Appl. Phys. 76, 7209–7216 (1994).
[CrossRef]

Drechsler, U.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Drig, W. Hberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77, 3299–3301 (2000).
[CrossRef]

G. Binnig, M. Despont, U. Drechsler, W. Hberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, T. W. Kenny, “Ultrahigh-density atomic force microscopy data storage with erase capability,” Appl. Phys. Lett. 74, 1329–1331 (1999).
[CrossRef]

Drig, U.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Drig, W. Hberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77, 3299–3301 (2000).
[CrossRef]

Dutoit, B.

D. Zeisel, S. Nettesheim, B. Dutoit, R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996).
[CrossRef]

Edidin, M.

J. Hwang, L. K. Tamm, C. Böhm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

Ehrichs, E. E.

S. Rubel, M. Trochet, E. E. Ehrichs, W. F. Smith, A. L. de Lozanne, “Nanofabrication and rapid imaging with a scanning tunneling microscope,” J. Vac. Sci. Technol. B 12, 1894–1897 (1994).
[CrossRef]

Eigler, D. M.

D. M. Eigler, E. K. Schweizer, “Positioning single atoms with a scanning tunneling microscope,” Nature 344, 524–526 (1990).
[CrossRef]

Fann, W. S.

Fernandez, A.

H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Hot electron interactions at the passivated gold-silicon interface,” Phys. Rev. Lett. 69, 2931–2934 (1992).
[CrossRef] [PubMed]

H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Gold-silicon interface modification studies,” J. Vac. Sci. Technol. B 9, 585–589 (1991).
[CrossRef]

Finn, P. L.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Gerstner, V.

V. Gerstner, A. Thon, W. Pfeiffer, “Thermal effects in pulsed laser assisted scanning tunneling microscopy,” J. Appl. Phys. 87, 2574–2580 (2000).
[CrossRef]

Grey, F.

S. Madsen, M. Müllenborn, K. Birkelund, F. Grey, “Optical near-field lithography on hydrogen-passivated silicon surfaces,” Appl. Phys. Lett. 69, 544–546 (1996).
[CrossRef]

Gucciardi, P. G.

P. G. Gucciardi, M. Colocci, M. Labardi, M. Allegrini, “Thermal-expansion effects in near-field optical microscopy fiber probes induced by laser light absorption,” Appl. Phys. Lett 75, 3408–3410 (1999).
[CrossRef]

Guethner, P. H.

H. J. Mamin, P. H. Guethner, D. Rugar, “Atomic emission from a gold scanning-tunneling-microscope tip,” Phys. Rev. Lett. 65, 2418–2421 (1990).
[CrossRef] [PubMed]

Gyorgy, E. M.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Hallen, H. D.

S. H. Huerth, M. P. Taylor, H. D. Hallen, B. H. Moeckly, “Electromigration in YBCO using a metal clad near-field scanning optical microscope probe,” Appl. Phys. Lett. 77, 2127–2129 (2000).
[CrossRef]

A. H. La Rosa, B. I. Yakobson, H. D. Hallen, “Origins and effects of thermal processes on near-field optical probes,” Appl. Phys. Lett. 67, 2597–2599 (1995).
[CrossRef]

B. I. Yakobson, A. La Rosa, H. D. Hallen, M. A. Paesler, “Thermal/optical effect in NSOM probes,” Ultramicroscopy 61, 179–185 (1995).
[CrossRef]

H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Hot electron interactions at the passivated gold-silicon interface,” Phys. Rev. Lett. 69, 2931–2934 (1992).
[CrossRef] [PubMed]

H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Gold-silicon interface modification studies,” J. Vac. Sci. Technol. B 9, 585–589 (1991).
[CrossRef]

A. La Rosa, H. D. Hallen, “Heat effects on the performance of near-field scanning optical microscopy probes as Fabry-Perot mirrors,” presented at the American Physical Society Northwest Section Annual Meeting, Eugene, Oreg., 19–20 May 2000.

Hang, R.

Hasegawa, Y.

Ph. Avouris, I.-W. Lyo, Y. Hasegawa, “Scanning tunneling microscope tip-sample interactions: atomic modification of Si and nanometer Si Schottky diodes,” J. Vac. Sci. Technol. A 11, 1725–1732 (1993).
[CrossRef]

Hberle, W.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Drig, W. Hberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77, 3299–3301 (2000).
[CrossRef]

G. Binnig, M. Despont, U. Drechsler, W. Hberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, T. W. Kenny, “Ultrahigh-density atomic force microscopy data storage with erase capability,” Appl. Phys. Lett. 74, 1329–1331 (1999).
[CrossRef]

Hietschold, M.

P. J. Moyer, K. Walzer, M. Hietschold, “Modification of the optical properties of liquid crystals using near-field scanning optical microscopy,” Appl. Phys. Lett. 67, 2129–2131 (1995).
[CrossRef]

Higashi, G. S.

R. S. Becker, G. S. Higashi, Y. J. Chabel, A. J. Becker, “Atomic-scale conversion of clean Si(111):H-1 × 1 to Si(111)-2 × 1 by electron-stimulated desorption,” Phys. Rev. Lett. 65, 1917–1920 (1990).
[CrossRef] [PubMed]

Hoen, S.

S. Hoen, H. J. Mamin, D. Rugar, “Thermomechanical data storage using a fiber optic stylus,” Appl. Phys. Lett. 64, 267–269 (1994).
[CrossRef]

Hong, S.

S. Hong, C. A. Mirkin, “A nanoplotter with both parallel and serial writing capabilities,” Science 288, 1808–1811 (2000).
[CrossRef] [PubMed]

Hsieh, B. R.

Hsu, J. H.

Huang, T.

H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Hot electron interactions at the passivated gold-silicon interface,” Phys. Rev. Lett. 69, 2931–2934 (1992).
[CrossRef] [PubMed]

H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Gold-silicon interface modification studies,” J. Vac. Sci. Technol. B 9, 585–589 (1991).
[CrossRef]

Huerth, S. H.

S. H. Huerth, M. P. Taylor, H. D. Hallen, B. H. Moeckly, “Electromigration in YBCO using a metal clad near-field scanning optical microscope probe,” Appl. Phys. Lett. 77, 2127–2129 (2000).
[CrossRef]

Hwang, J.

J. Hwang, L. K. Tamm, C. Böhm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

K Wei, P.

Kavaldjiev, D. I.

D. I. Kavaldjiev, R. Toledo-Crow, M. Vaez-Iravani, “On the heating of the fiber tip in a near-field scanning optical microscope,” Appl. Phys. Lett. 67, 2771–2773 (1995).
[CrossRef]

Kenny, T. W.

G. Binnig, M. Despont, U. Drechsler, W. Hberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, T. W. Kenny, “Ultrahigh-density atomic force microscopy data storage with erase capability,” Appl. Phys. Lett. 74, 1329–1331 (1999).
[CrossRef]

La Rosa, A.

B. I. Yakobson, A. La Rosa, H. D. Hallen, M. A. Paesler, “Thermal/optical effect in NSOM probes,” Ultramicroscopy 61, 179–185 (1995).
[CrossRef]

A. La Rosa, H. D. Hallen, “Heat effects on the performance of near-field scanning optical microscopy probes as Fabry-Perot mirrors,” presented at the American Physical Society Northwest Section Annual Meeting, Eugene, Oreg., 19–20 May 2000.

La Rosa, A. H.

A. H. La Rosa, B. I. Yakobson, H. D. Hallen, “Origins and effects of thermal processes on near-field optical probes,” Appl. Phys. Lett. 67, 2597–2599 (1995).
[CrossRef]

Labardi, M.

P. G. Gucciardi, M. Colocci, M. Labardi, M. Allegrini, “Thermal-expansion effects in near-field optical microscopy fiber probes induced by laser light absorption,” Appl. Phys. Lett 75, 3408–3410 (1999).
[CrossRef]

Lanni, F.

E. Betzig, R. J. Chichester, F. Lanni, D. L. Taylor, “Near-field fluorescence imaging of cytoskeletal actin,” Bioimaging 1, 129–135 (1993).
[CrossRef]

Lauger, K.

J.-B. Xu, K. Lauger, R. Moller, K. Dransfeld, I. H. Wilson, “Heat transfer between two metallic surfaces at small distances,” J. Appl. Phys. 76, 7209–7216 (1994).
[CrossRef]

Lin, S. H.

Lutwyche, M.

G. Binnig, M. Despont, U. Drechsler, W. Hberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, T. W. Kenny, “Ultrahigh-density atomic force microscopy data storage with erase capability,” Appl. Phys. Lett. 74, 1329–1331 (1999).
[CrossRef]

Lutwyche, M. I.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Drig, W. Hberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77, 3299–3301 (2000).
[CrossRef]

Lyo, I.-W.

Ph. Avouris, I.-W. Lyo, Y. Hasegawa, “Scanning tunneling microscope tip-sample interactions: atomic modification of Si and nanometer Si Schottky diodes,” J. Vac. Sci. Technol. A 11, 1725–1732 (1993).
[CrossRef]

Madsen, S.

S. Madsen, M. Müllenborn, K. Birkelund, F. Grey, “Optical near-field lithography on hydrogen-passivated silicon surfaces,” Appl. Phys. Lett. 69, 544–546 (1996).
[CrossRef]

Mamin, H. J.

G. Binnig, M. Despont, U. Drechsler, W. Hberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, T. W. Kenny, “Ultrahigh-density atomic force microscopy data storage with erase capability,” Appl. Phys. Lett. 74, 1329–1331 (1999).
[CrossRef]

S. Hoen, H. J. Mamin, D. Rugar, “Thermomechanical data storage using a fiber optic stylus,” Appl. Phys. Lett. 64, 267–269 (1994).
[CrossRef]

H. J. Mamin, D. Rugar, “Thermomechanical writing with an atomic force microscope tip,” Appl. Phys. Lett. 61, 1003–1005 (1992).
[CrossRef]

H. J. Mamin, P. H. Guethner, D. Rugar, “Atomic emission from a gold scanning-tunneling-microscope tip,” Phys. Rev. Lett. 65, 2418–2421 (1990).
[CrossRef] [PubMed]

Marrian, C. R. K.

C. R. K. Marrian, E. A. Dobisz, John A. Dagata, “Electron-beam lithography with the scanning tunneling microscope,” J. Vac. Sci. Technol. B 10, 2877–2881 (1992).
[CrossRef]

Meixner, A. J.

M. Stähelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Gränacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
[CrossRef]

Mirkin, C. A.

S. Hong, C. A. Mirkin, “A nanoplotter with both parallel and serial writing capabilities,” Science 288, 1808–1811 (2000).
[CrossRef] [PubMed]

Moeckly, B. H.

S. H. Huerth, M. P. Taylor, H. D. Hallen, B. H. Moeckly, “Electromigration in YBCO using a metal clad near-field scanning optical microscope probe,” Appl. Phys. Lett. 77, 2127–2129 (2000).
[CrossRef]

Moller, R.

J.-B. Xu, K. Lauger, R. Moller, K. Dransfeld, I. H. Wilson, “Heat transfer between two metallic surfaces at small distances,” J. Appl. Phys. 76, 7209–7216 (1994).
[CrossRef]

Moyer, P. J.

P. J. Moyer, K. Walzer, M. Hietschold, “Modification of the optical properties of liquid crystals using near-field scanning optical microscopy,” Appl. Phys. Lett. 67, 2129–2131 (1995).
[CrossRef]

M. A. Paesler, P. J. Moyer, Near-Field Optics: Theory, Instrumentation and Applications (Wiley, New York, 1996).

Müllenborn, M.

S. Madsen, M. Müllenborn, K. Birkelund, F. Grey, “Optical near-field lithography on hydrogen-passivated silicon surfaces,” Appl. Phys. Lett. 69, 544–546 (1996).
[CrossRef]

Nettesheim, S.

D. Zeisel, S. Nettesheim, B. Dutoit, R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996).
[CrossRef]

Paesler, M. A.

B. I. Yakobson, A. La Rosa, H. D. Hallen, M. A. Paesler, “Thermal/optical effect in NSOM probes,” Ultramicroscopy 61, 179–185 (1995).
[CrossRef]

M. A. Paesler, P. J. Moyer, Near-Field Optics: Theory, Instrumentation and Applications (Wiley, New York, 1996).

Pfeiffer, W.

V. Gerstner, A. Thon, W. Pfeiffer, “Thermal effects in pulsed laser assisted scanning tunneling microscopy,” J. Appl. Phys. 87, 2574–2580 (2000).
[CrossRef]

Ramalingam, T. S.

J. Hwang, L. K. Tamm, C. Böhm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

Rothuizen, H.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Drig, W. Hberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77, 3299–3301 (2000).
[CrossRef]

Rubel, S.

S. Rubel, M. Trochet, E. E. Ehrichs, W. F. Smith, A. L. de Lozanne, “Nanofabrication and rapid imaging with a scanning tunneling microscope,” J. Vac. Sci. Technol. B 12, 1894–1897 (1994).
[CrossRef]

Rugar, D.

S. Hoen, H. J. Mamin, D. Rugar, “Thermomechanical data storage using a fiber optic stylus,” Appl. Phys. Lett. 64, 267–269 (1994).
[CrossRef]

H. J. Mamin, D. Rugar, “Thermomechanical writing with an atomic force microscope tip,” Appl. Phys. Lett. 61, 1003–1005 (1992).
[CrossRef]

H. J. Mamin, P. H. Guethner, D. Rugar, “Atomic emission from a gold scanning-tunneling-microscope tip,” Phys. Rev. Lett. 65, 2418–2421 (1990).
[CrossRef] [PubMed]

Schweizer, E. K.

D. M. Eigler, E. K. Schweizer, “Positioning single atoms with a scanning tunneling microscope,” Nature 344, 524–526 (1990).
[CrossRef]

Silcox, J.

H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Hot electron interactions at the passivated gold-silicon interface,” Phys. Rev. Lett. 69, 2931–2934 (1992).
[CrossRef] [PubMed]

H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Gold-silicon interface modification studies,” J. Vac. Sci. Technol. B 9, 585–589 (1991).
[CrossRef]

Smith, W. F.

S. Rubel, M. Trochet, E. E. Ehrichs, W. F. Smith, A. L. de Lozanne, “Nanofabrication and rapid imaging with a scanning tunneling microscope,” J. Vac. Sci. Technol. B 12, 1894–1897 (1994).
[CrossRef]

Stähelin, M.

M. Stähelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Gränacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
[CrossRef]

Stroscio, J. A.

L. J. Whitman, J. A. Stroscio, R. A. Dragoset, R. J. Celotta, “Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope,” Science 251, 1206–1210 (1991).
[CrossRef] [PubMed]

Stutz, R.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Drig, W. Hberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77, 3299–3301 (2000).
[CrossRef]

Tamm, L. K.

J. Hwang, L. K. Tamm, C. Böhm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

Tarrach, G.

M. Stähelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Gränacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
[CrossRef]

Taylor, D. L.

E. Betzig, R. J. Chichester, F. Lanni, D. L. Taylor, “Near-field fluorescence imaging of cytoskeletal actin,” Bioimaging 1, 129–135 (1993).
[CrossRef]

Taylor, M. P.

S. H. Huerth, M. P. Taylor, H. D. Hallen, B. H. Moeckly, “Electromigration in YBCO using a metal clad near-field scanning optical microscope probe,” Appl. Phys. Lett. 77, 2127–2129 (2000).
[CrossRef]

Thon, A.

V. Gerstner, A. Thon, W. Pfeiffer, “Thermal effects in pulsed laser assisted scanning tunneling microscopy,” J. Appl. Phys. 87, 2574–2580 (2000).
[CrossRef]

Toledo-Crow, R.

D. I. Kavaldjiev, R. Toledo-Crow, M. Vaez-Iravani, “On the heating of the fiber tip in a near-field scanning optical microscope,” Appl. Phys. Lett. 67, 2771–2773 (1995).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Trochet, M.

S. Rubel, M. Trochet, E. E. Ehrichs, W. F. Smith, A. L. de Lozanne, “Nanofabrication and rapid imaging with a scanning tunneling microscope,” J. Vac. Sci. Technol. B 12, 1894–1897 (1994).
[CrossRef]

Vaez-Iravani, M.

D. I. Kavaldjiev, R. Toledo-Crow, M. Vaez-Iravani, “On the heating of the fiber tip in a near-field scanning optical microscope,” Appl. Phys. Lett. 67, 2771–2773 (1995).
[CrossRef]

Vettiger, P.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Drig, W. Hberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77, 3299–3301 (2000).
[CrossRef]

G. Binnig, M. Despont, U. Drechsler, W. Hberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, T. W. Kenny, “Ultrahigh-density atomic force microscopy data storage with erase capability,” Appl. Phys. Lett. 74, 1329–1331 (1999).
[CrossRef]

Walzer, K.

P. J. Moyer, K. Walzer, M. Hietschold, “Modification of the optical properties of liquid crystals using near-field scanning optical microscopy,” Appl. Phys. Lett. 67, 2129–2131 (1995).
[CrossRef]

Whitman, L. J.

L. J. Whitman, J. A. Stroscio, R. A. Dragoset, R. J. Celotta, “Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope,” Science 251, 1206–1210 (1991).
[CrossRef] [PubMed]

Widmer, R.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Drig, W. Hberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77, 3299–3301 (2000).
[CrossRef]

Wilson, I. H.

J.-B. Xu, K. Lauger, R. Moller, K. Dransfeld, I. H. Wilson, “Heat transfer between two metallic surfaces at small distances,” J. Appl. Phys. 76, 7209–7216 (1994).
[CrossRef]

Wolfe, R.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Xu, J.-B.

J.-B. Xu, K. Lauger, R. Moller, K. Dransfeld, I. H. Wilson, “Heat transfer between two metallic surfaces at small distances,” J. Appl. Phys. 76, 7209–7216 (1994).
[CrossRef]

Yakobson, B. I.

B. I. Yakobson, A. La Rosa, H. D. Hallen, M. A. Paesler, “Thermal/optical effect in NSOM probes,” Ultramicroscopy 61, 179–185 (1995).
[CrossRef]

A. H. La Rosa, B. I. Yakobson, H. D. Hallen, “Origins and effects of thermal processes on near-field optical probes,” Appl. Phys. Lett. 67, 2597–2599 (1995).
[CrossRef]

Zeisel, D.

D. Zeisel, S. Nettesheim, B. Dutoit, R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996).
[CrossRef]

Zenobi, R.

D. Zeisel, S. Nettesheim, B. Dutoit, R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996).
[CrossRef]

Zschokke-Gränacher, I.

M. Stähelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Gränacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
[CrossRef]

Appl. Phys. Lett (1)

P. G. Gucciardi, M. Colocci, M. Labardi, M. Allegrini, “Thermal-expansion effects in near-field optical microscopy fiber probes induced by laser light absorption,” Appl. Phys. Lett 75, 3408–3410 (1999).
[CrossRef]

Appl. Phys. Lett. (12)

M. Stähelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Gränacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
[CrossRef]

P. J. Moyer, K. Walzer, M. Hietschold, “Modification of the optical properties of liquid crystals using near-field scanning optical microscopy,” Appl. Phys. Lett. 67, 2129–2131 (1995).
[CrossRef]

G. Binnig, M. Despont, U. Drechsler, W. Hberle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui, T. W. Kenny, “Ultrahigh-density atomic force microscopy data storage with erase capability,” Appl. Phys. Lett. 74, 1329–1331 (1999).
[CrossRef]

M. I. Lutwyche, M. Despont, U. Drechsler, U. Drig, W. Hberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77, 3299–3301 (2000).
[CrossRef]

D. I. Kavaldjiev, R. Toledo-Crow, M. Vaez-Iravani, “On the heating of the fiber tip in a near-field scanning optical microscope,” Appl. Phys. Lett. 67, 2771–2773 (1995).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

S. Madsen, M. Müllenborn, K. Birkelund, F. Grey, “Optical near-field lithography on hydrogen-passivated silicon surfaces,” Appl. Phys. Lett. 69, 544–546 (1996).
[CrossRef]

S. H. Huerth, M. P. Taylor, H. D. Hallen, B. H. Moeckly, “Electromigration in YBCO using a metal clad near-field scanning optical microscope probe,” Appl. Phys. Lett. 77, 2127–2129 (2000).
[CrossRef]

H. J. Mamin, D. Rugar, “Thermomechanical writing with an atomic force microscope tip,” Appl. Phys. Lett. 61, 1003–1005 (1992).
[CrossRef]

S. Hoen, H. J. Mamin, D. Rugar, “Thermomechanical data storage using a fiber optic stylus,” Appl. Phys. Lett. 64, 267–269 (1994).
[CrossRef]

D. Zeisel, S. Nettesheim, B. Dutoit, R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996).
[CrossRef]

A. H. La Rosa, B. I. Yakobson, H. D. Hallen, “Origins and effects of thermal processes on near-field optical probes,” Appl. Phys. Lett. 67, 2597–2599 (1995).
[CrossRef]

Bioimaging (1)

E. Betzig, R. J. Chichester, F. Lanni, D. L. Taylor, “Near-field fluorescence imaging of cytoskeletal actin,” Bioimaging 1, 129–135 (1993).
[CrossRef]

J. Appl. Phys. (2)

V. Gerstner, A. Thon, W. Pfeiffer, “Thermal effects in pulsed laser assisted scanning tunneling microscopy,” J. Appl. Phys. 87, 2574–2580 (2000).
[CrossRef]

J.-B. Xu, K. Lauger, R. Moller, K. Dransfeld, I. H. Wilson, “Heat transfer between two metallic surfaces at small distances,” J. Appl. Phys. 76, 7209–7216 (1994).
[CrossRef]

J. Vac. Sci. Technol. A (1)

Ph. Avouris, I.-W. Lyo, Y. Hasegawa, “Scanning tunneling microscope tip-sample interactions: atomic modification of Si and nanometer Si Schottky diodes,” J. Vac. Sci. Technol. A 11, 1725–1732 (1993).
[CrossRef]

J. Vac. Sci. Technol. B (3)

H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Gold-silicon interface modification studies,” J. Vac. Sci. Technol. B 9, 585–589 (1991).
[CrossRef]

C. R. K. Marrian, E. A. Dobisz, John A. Dagata, “Electron-beam lithography with the scanning tunneling microscope,” J. Vac. Sci. Technol. B 10, 2877–2881 (1992).
[CrossRef]

S. Rubel, M. Trochet, E. E. Ehrichs, W. F. Smith, A. L. de Lozanne, “Nanofabrication and rapid imaging with a scanning tunneling microscope,” J. Vac. Sci. Technol. B 12, 1894–1897 (1994).
[CrossRef]

Nature (1)

D. M. Eigler, E. K. Schweizer, “Positioning single atoms with a scanning tunneling microscope,” Nature 344, 524–526 (1990).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (3)

H. J. Mamin, P. H. Guethner, D. Rugar, “Atomic emission from a gold scanning-tunneling-microscope tip,” Phys. Rev. Lett. 65, 2418–2421 (1990).
[CrossRef] [PubMed]

R. S. Becker, G. S. Higashi, Y. J. Chabel, A. J. Becker, “Atomic-scale conversion of clean Si(111):H-1 × 1 to Si(111)-2 × 1 by electron-stimulated desorption,” Phys. Rev. Lett. 65, 1917–1920 (1990).
[CrossRef] [PubMed]

H. D. Hallen, A. Fernandez, T. Huang, R. A. Buhrman, J. Silcox, “Hot electron interactions at the passivated gold-silicon interface,” Phys. Rev. Lett. 69, 2931–2934 (1992).
[CrossRef] [PubMed]

Science (3)

L. J. Whitman, J. A. Stroscio, R. A. Dragoset, R. J. Celotta, “Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope,” Science 251, 1206–1210 (1991).
[CrossRef] [PubMed]

S. Hong, C. A. Mirkin, “A nanoplotter with both parallel and serial writing capabilities,” Science 288, 1808–1811 (2000).
[CrossRef] [PubMed]

J. Hwang, L. K. Tamm, C. Böhm, T. S. Ramalingam, E. Betzig, M. Edidin, “Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy,” Science 270, 610–614 (1995).
[CrossRef] [PubMed]

Ultramicroscopy (1)

B. I. Yakobson, A. La Rosa, H. D. Hallen, M. A. Paesler, “Thermal/optical effect in NSOM probes,” Ultramicroscopy 61, 179–185 (1995).
[CrossRef]

Other (3)

M. A. Paesler, P. J. Moyer, Near-Field Optics: Theory, Instrumentation and Applications (Wiley, New York, 1996).

A. La Rosa, H. D. Hallen, “Heat effects on the performance of near-field scanning optical microscopy probes as Fabry-Perot mirrors,” presented at the American Physical Society Northwest Section Annual Meeting, Eugene, Oreg., 19–20 May 2000.

B. Biehler, “Characterization of thermal probe elongation in near-field optical microscopy,” M.S. thesis (Physics Department, Portland State University, Portland, Oreg., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM micrographs of typical uncoated (a) slender and (b) chubby tapered probe geometry used in the present experiment.

Fig. 2
Fig. 2

(a) Tip is placed at a fixed lateral position relative to the sample, with no light coupled into the probe. By use of the shear force mechanism23 (not shown in the figure), the probe-sample distance is maintained at approximately 10 nm. (b) When modulated visible light (or IR light) couples into the probe, the probe elongates and contracts, causing the shear force mechanism of the NSOM to respond. The tip-sample distance remains fixed, and we record the resulting up and down sample displacements. A typical modulation intensity for the visible or near-infrared input light is 0.5-mW pk-pk, with a 1-s period.

Fig. 3
Fig. 3

(a) Probe elongation as a function of time is shown (left) driven by IR light and (right) driven by visible light. Both input powers were blocked manually. The sapphire-sample displacement follows the elongation and contraction of the probe. The nominal value of the input power in each case is 0.5 mW; the corresponding different elongations they produce on the probe result from the uncertainties of the actual input power reaching the probe. (b) (Modulated) visible and (continuous-wave) IR input powers correlate with tip elongation. The sample (silicon) displacement Z follows the elongation/contraction of the probe. In the on state, both input powers have a nominal value of 0.5 mW. Bottom curve, modulated input visible light; top curve, elongation of the probe. Note that the probe experiences an additional elongation when the infrared beam is turned on.

Fig. 4
Fig. 4

Measurement of the probe elongation and contraction for different probe sample distances. The light is modulated at 1 Hz producing rapid sample positioning variations. Reduction of the feedback level in steps causes a reduction in the probe-sample distance. From left to right, probe-sample distance decreases in discrete steps; however, the probe elongation remains approximately invariant (a 15-nm window is shown for comparison). Typically, the feedback stability in our system is 1 nm. Data outside the 15-nm window result from instabilities of the input power laser.

Fig. 5
Fig. 5

Temperature along the probe is not uniform, as shown by the solid curve (adapted from the experimental data in Ref. 22). A temperature increase of 50 °C at the tip end is expected for a 0.5-mW input power. The temperature profile is used to calculate the thermal expansion of a 1-mm-long bare fiber (circles) and a full metal probe (squares). The aluminum coating is taken into account by considering a position-dependent thermal coefficient that equals αAL at the tip end and αquartz at the shank. The corresponding probe expansion (diamonds) provides a better fit to the observed probe thermal expansion in our experiment. Note that the region closer to the tip end contributes more to the elongation.

Metrics