O. Soyemi, F. G. Haibach, A. E. Greer, M. V. Shiza, P. Gemperline, M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectrosc. 56, 396–398 (2002).

[CrossRef]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).

[CrossRef]

K. S. Booksh, A. M. C. Prakash, C. M. Stellman, “Optical regression: a method for improving quantitative precision of multivariate predictions with single channel spectrometers,” Chemom. Intell. Lab. Syst. 46, 265–274 (1999).

[CrossRef]

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).

[CrossRef]
[PubMed]

A. Kasparov, V. Ryabenko, “Numerical study of a pattern recognition multispectral system with optimal spectral splitting,” Pattern Recogn. Image Anal. 1, 347–354 (1991).

S. E. Bialkowski, “A scheme for species discrimination and quantitative estimation using incoherent lidar optical signal processing,” Anal. Chem. 58, 2561–2563 (1986).

[CrossRef]

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).

[CrossRef]
[PubMed]

S. E. Bialkowski, “A scheme for species discrimination and quantitative estimation using incoherent lidar optical signal processing,” Anal. Chem. 58, 2561–2563 (1986).

[CrossRef]

K. S. Booksh, A. M. C. Prakash, C. M. Stellman, “Optical regression: a method for improving quantitative precision of multivariate predictions with single channel spectrometers,” Chemom. Intell. Lab. Syst. 46, 265–274 (1999).

[CrossRef]

J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, N.J., 1983).

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).

[CrossRef]
[PubMed]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).

[CrossRef]

P. Geladi, H. Grahn, Multivariate Image Analysis (Wiley, New York, 1996).

O. Soyemi, F. G. Haibach, A. E. Greer, M. V. Shiza, P. Gemperline, M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectrosc. 56, 396–398 (2002).

[CrossRef]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).

[CrossRef]

P. Geladi, H. Grahn, Multivariate Image Analysis (Wiley, New York, 1996).

O. Soyemi, F. G. Haibach, A. E. Greer, M. V. Shiza, P. Gemperline, M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectrosc. 56, 396–398 (2002).

[CrossRef]

O. Soyemi, F. G. Haibach, A. E. Greer, M. V. Shiza, P. Gemperline, M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectrosc. 56, 396–398 (2002).

[CrossRef]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).

[CrossRef]

A. Kasparov, V. Ryabenko, “Numerical study of a pattern recognition multispectral system with optimal spectral splitting,” Pattern Recogn. Image Anal. 1, 347–354 (1991).

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).

[CrossRef]

O. Soyemi, F. G. Haibach, A. E. Greer, M. V. Shiza, P. Gemperline, M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectrosc. 56, 396–398 (2002).

[CrossRef]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).

[CrossRef]

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).

[CrossRef]
[PubMed]

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).

[CrossRef]
[PubMed]

K. S. Booksh, A. M. C. Prakash, C. M. Stellman, “Optical regression: a method for improving quantitative precision of multivariate predictions with single channel spectrometers,” Chemom. Intell. Lab. Syst. 46, 265–274 (1999).

[CrossRef]

A. Kasparov, V. Ryabenko, “Numerical study of a pattern recognition multispectral system with optimal spectral splitting,” Pattern Recogn. Image Anal. 1, 347–354 (1991).

J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, N.J., 1983).

O. Soyemi, F. G. Haibach, A. E. Greer, M. V. Shiza, P. Gemperline, M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectrosc. 56, 396–398 (2002).

[CrossRef]

O. Soyemi, F. G. Haibach, A. E. Greer, M. V. Shiza, P. Gemperline, M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectrosc. 56, 396–398 (2002).

[CrossRef]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).

[CrossRef]

K. S. Booksh, A. M. C. Prakash, C. M. Stellman, “Optical regression: a method for improving quantitative precision of multivariate predictions with single channel spectrometers,” Chemom. Intell. Lab. Syst. 46, 265–274 (1999).

[CrossRef]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).

[CrossRef]

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).

[CrossRef]
[PubMed]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).

[CrossRef]

S. E. Bialkowski, “A scheme for species discrimination and quantitative estimation using incoherent lidar optical signal processing,” Anal. Chem. 58, 2561–2563 (1986).

[CrossRef]

M. P. Nelson, J. F. Aust, J. A. Dobrowolski, P. G. Verly, M. L. Myrick, “Multivariate optical computation for predictive spectroscopy,” Anal. Chem. 70, 73–82 (1998).

[CrossRef]
[PubMed]

O. Soyemi, D. Eastwood, L. Zhang, H. Li, J. Karunamuni, P. Gemperline, R. A. Synowicki, M. L. Myrick, “Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy,” Anal. Chem. 73, 1069–1079 (2001).

[CrossRef]

O. Soyemi, F. G. Haibach, A. E. Greer, M. V. Shiza, P. Gemperline, M. L. Myrick, “Nonlinear optimization algorithm for multivariate optical element design,” Appl. Spectrosc. 56, 396–398 (2002).

[CrossRef]

K. S. Booksh, A. M. C. Prakash, C. M. Stellman, “Optical regression: a method for improving quantitative precision of multivariate predictions with single channel spectrometers,” Chemom. Intell. Lab. Syst. 46, 265–274 (1999).

[CrossRef]

A. Kasparov, V. Ryabenko, “Numerical study of a pattern recognition multispectral system with optimal spectral splitting,” Pattern Recogn. Image Anal. 1, 347–354 (1991).

J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, N.J., 1983).

P. Geladi, H. Grahn, Multivariate Image Analysis (Wiley, New York, 1996).