Abstract

We report single-wavelength ellipsometric measurements of the complex index of refraction of rough Zn3As2 films on InP substrates. What we believe to be a novel technique, based on surface roughness measurements by atomic-force microscopy, is discussed to extract useful information from the ellipsometry results. The anticipated presence of a thin oxide layer is confirmed by Auger electron spectroscopy.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Misiewics, K. Jezierski, “Zinc arsenide (Zn3As2),” in Handbook of Optical Constants of Solids III, E. D. Palik, ed. (Academic, New York, 1998), pp. 595–607.
  2. M. Zivitz, J. R. Stevenson, “Optical properties of of the Cd3As2–Cd3P2 semiconductor alloy system,” Phys. Rev. B 10, 2457–2468 (1974).
    [CrossRef]
  3. J. Misiewics, J. M. Wrobel, K. Jezierski, “Interband transitions in Zn3As2,” Solid State Commun. 86, 509–511 (1993).
    [CrossRef]
  4. K. Jezierski, “A linear equations algorithm for reflectivity extrapolation determination in Kramers-Kronig analysis,” J. Phys. C 17, 475–482 (1984).
    [CrossRef]
  5. J. A. A. Engelbrecht, G. J. Scriven, J. H. Neetling, M. C. Wagener, “Crack formation in Zn3As2 epilayers grown by MOVPE,” J. Cryst. Growth 216, 235–244 (2000).
    [CrossRef]
  6. D. J. Brink, M. E. Lee, “Ellipsometry of diffractive insect reflectors,” Appl. Opt. 35, 1950–1959 (1996).
    [CrossRef] [PubMed]
  7. R. M. A. Azzam, N. M. Bashara, “Polarization characteristics of scattered radiation from a diffraction grating by ellipsometry with applications to surface roughness,” Phys. Rev. B 5, 4721–4729 (1972).
    [CrossRef]
  8. S. M. F. Nee, T. Cole, “Effects of depolarization of polarimetric components on null ellipsometry,” Thin Solid Films 313–314, 90–96 (1998).
    [CrossRef]
  9. G. E. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234, 416–422 (1993).
    [CrossRef]
  10. D. J. Brink, H. W. Kunert, R. Sieberhagen, “Particle irradiation of doping superlattices: an optical investigation,” J. Appl. Phys. 88, 2326–2330 (2000).
    [CrossRef]
  11. F. Bertin, A. Chabli, E. Chiariglione, M. Burdin, M. Berger, T. Boudet, O. Lartigue, G. Ravel, “Spectroscopic ellipsometry with compensator and x-ray specular reflectivity for characterization of thin optical layers on transparent substrates,” Thin Solid Films 313–314, 68–72 (1998).
    [CrossRef]
  12. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Anal. Phys. 5, 638–653 (1935).
  13. Ph. J. Roussel, J. Vanhellemont, H. E. Haes, “Numerical aspects of the implementation of effective medium approximation models in spectroscopic ellipsometry regression software,” Thin Solid Films 234, 423–427 (1993).
  14. W. A. McGahan, B. Johs, J. A. Woollam, “Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films,” Thin Solid Films 234, 443–446 (1993).
    [CrossRef]
  15. D. H. Loescher, R. J. Detry, M. J. Clauser, “Least-squares analysis of the film-substrate problem in ellipsometry,” J. Opt. Soc. Am. 61, 1230–1235 (1971).
    [CrossRef]
  16. D. J. Brink, J. E. Smit, M. E. Lee, A. Moller, “Optical diffraction by the microstructure on the wing of a moth,” Appl. Opt. 34, 6049–6057 (1995).
    [CrossRef] [PubMed]

2000 (2)

D. J. Brink, H. W. Kunert, R. Sieberhagen, “Particle irradiation of doping superlattices: an optical investigation,” J. Appl. Phys. 88, 2326–2330 (2000).
[CrossRef]

J. A. A. Engelbrecht, G. J. Scriven, J. H. Neetling, M. C. Wagener, “Crack formation in Zn3As2 epilayers grown by MOVPE,” J. Cryst. Growth 216, 235–244 (2000).
[CrossRef]

1998 (2)

F. Bertin, A. Chabli, E. Chiariglione, M. Burdin, M. Berger, T. Boudet, O. Lartigue, G. Ravel, “Spectroscopic ellipsometry with compensator and x-ray specular reflectivity for characterization of thin optical layers on transparent substrates,” Thin Solid Films 313–314, 68–72 (1998).
[CrossRef]

S. M. F. Nee, T. Cole, “Effects of depolarization of polarimetric components on null ellipsometry,” Thin Solid Films 313–314, 90–96 (1998).
[CrossRef]

1996 (1)

1995 (1)

1993 (4)

G. E. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234, 416–422 (1993).
[CrossRef]

Ph. J. Roussel, J. Vanhellemont, H. E. Haes, “Numerical aspects of the implementation of effective medium approximation models in spectroscopic ellipsometry regression software,” Thin Solid Films 234, 423–427 (1993).

W. A. McGahan, B. Johs, J. A. Woollam, “Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films,” Thin Solid Films 234, 443–446 (1993).
[CrossRef]

J. Misiewics, J. M. Wrobel, K. Jezierski, “Interband transitions in Zn3As2,” Solid State Commun. 86, 509–511 (1993).
[CrossRef]

1984 (1)

K. Jezierski, “A linear equations algorithm for reflectivity extrapolation determination in Kramers-Kronig analysis,” J. Phys. C 17, 475–482 (1984).
[CrossRef]

1974 (1)

M. Zivitz, J. R. Stevenson, “Optical properties of of the Cd3As2–Cd3P2 semiconductor alloy system,” Phys. Rev. B 10, 2457–2468 (1974).
[CrossRef]

1972 (1)

R. M. A. Azzam, N. M. Bashara, “Polarization characteristics of scattered radiation from a diffraction grating by ellipsometry with applications to surface roughness,” Phys. Rev. B 5, 4721–4729 (1972).
[CrossRef]

1971 (1)

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Anal. Phys. 5, 638–653 (1935).

Azzam, R. M. A.

R. M. A. Azzam, N. M. Bashara, “Polarization characteristics of scattered radiation from a diffraction grating by ellipsometry with applications to surface roughness,” Phys. Rev. B 5, 4721–4729 (1972).
[CrossRef]

Bashara, N. M.

R. M. A. Azzam, N. M. Bashara, “Polarization characteristics of scattered radiation from a diffraction grating by ellipsometry with applications to surface roughness,” Phys. Rev. B 5, 4721–4729 (1972).
[CrossRef]

Berger, M.

F. Bertin, A. Chabli, E. Chiariglione, M. Burdin, M. Berger, T. Boudet, O. Lartigue, G. Ravel, “Spectroscopic ellipsometry with compensator and x-ray specular reflectivity for characterization of thin optical layers on transparent substrates,” Thin Solid Films 313–314, 68–72 (1998).
[CrossRef]

Bertin, F.

F. Bertin, A. Chabli, E. Chiariglione, M. Burdin, M. Berger, T. Boudet, O. Lartigue, G. Ravel, “Spectroscopic ellipsometry with compensator and x-ray specular reflectivity for characterization of thin optical layers on transparent substrates,” Thin Solid Films 313–314, 68–72 (1998).
[CrossRef]

Boudet, T.

F. Bertin, A. Chabli, E. Chiariglione, M. Burdin, M. Berger, T. Boudet, O. Lartigue, G. Ravel, “Spectroscopic ellipsometry with compensator and x-ray specular reflectivity for characterization of thin optical layers on transparent substrates,” Thin Solid Films 313–314, 68–72 (1998).
[CrossRef]

Brink, D. J.

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Anal. Phys. 5, 638–653 (1935).

Burdin, M.

F. Bertin, A. Chabli, E. Chiariglione, M. Burdin, M. Berger, T. Boudet, O. Lartigue, G. Ravel, “Spectroscopic ellipsometry with compensator and x-ray specular reflectivity for characterization of thin optical layers on transparent substrates,” Thin Solid Films 313–314, 68–72 (1998).
[CrossRef]

Chabli, A.

F. Bertin, A. Chabli, E. Chiariglione, M. Burdin, M. Berger, T. Boudet, O. Lartigue, G. Ravel, “Spectroscopic ellipsometry with compensator and x-ray specular reflectivity for characterization of thin optical layers on transparent substrates,” Thin Solid Films 313–314, 68–72 (1998).
[CrossRef]

Chiariglione, E.

F. Bertin, A. Chabli, E. Chiariglione, M. Burdin, M. Berger, T. Boudet, O. Lartigue, G. Ravel, “Spectroscopic ellipsometry with compensator and x-ray specular reflectivity for characterization of thin optical layers on transparent substrates,” Thin Solid Films 313–314, 68–72 (1998).
[CrossRef]

Clauser, M. J.

Cole, T.

S. M. F. Nee, T. Cole, “Effects of depolarization of polarimetric components on null ellipsometry,” Thin Solid Films 313–314, 90–96 (1998).
[CrossRef]

Detry, R. J.

Engelbrecht, J. A. A.

J. A. A. Engelbrecht, G. J. Scriven, J. H. Neetling, M. C. Wagener, “Crack formation in Zn3As2 epilayers grown by MOVPE,” J. Cryst. Growth 216, 235–244 (2000).
[CrossRef]

Haes, H. E.

Ph. J. Roussel, J. Vanhellemont, H. E. Haes, “Numerical aspects of the implementation of effective medium approximation models in spectroscopic ellipsometry regression software,” Thin Solid Films 234, 423–427 (1993).

Jellison, G. E.

G. E. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234, 416–422 (1993).
[CrossRef]

Jezierski, K.

J. Misiewics, J. M. Wrobel, K. Jezierski, “Interband transitions in Zn3As2,” Solid State Commun. 86, 509–511 (1993).
[CrossRef]

K. Jezierski, “A linear equations algorithm for reflectivity extrapolation determination in Kramers-Kronig analysis,” J. Phys. C 17, 475–482 (1984).
[CrossRef]

J. Misiewics, K. Jezierski, “Zinc arsenide (Zn3As2),” in Handbook of Optical Constants of Solids III, E. D. Palik, ed. (Academic, New York, 1998), pp. 595–607.

Johs, B.

W. A. McGahan, B. Johs, J. A. Woollam, “Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films,” Thin Solid Films 234, 443–446 (1993).
[CrossRef]

Kunert, H. W.

D. J. Brink, H. W. Kunert, R. Sieberhagen, “Particle irradiation of doping superlattices: an optical investigation,” J. Appl. Phys. 88, 2326–2330 (2000).
[CrossRef]

Lartigue, O.

F. Bertin, A. Chabli, E. Chiariglione, M. Burdin, M. Berger, T. Boudet, O. Lartigue, G. Ravel, “Spectroscopic ellipsometry with compensator and x-ray specular reflectivity for characterization of thin optical layers on transparent substrates,” Thin Solid Films 313–314, 68–72 (1998).
[CrossRef]

Lee, M. E.

Loescher, D. H.

McGahan, W. A.

W. A. McGahan, B. Johs, J. A. Woollam, “Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films,” Thin Solid Films 234, 443–446 (1993).
[CrossRef]

Misiewics, J.

J. Misiewics, J. M. Wrobel, K. Jezierski, “Interband transitions in Zn3As2,” Solid State Commun. 86, 509–511 (1993).
[CrossRef]

J. Misiewics, K. Jezierski, “Zinc arsenide (Zn3As2),” in Handbook of Optical Constants of Solids III, E. D. Palik, ed. (Academic, New York, 1998), pp. 595–607.

Moller, A.

Nee, S. M. F.

S. M. F. Nee, T. Cole, “Effects of depolarization of polarimetric components on null ellipsometry,” Thin Solid Films 313–314, 90–96 (1998).
[CrossRef]

Neetling, J. H.

J. A. A. Engelbrecht, G. J. Scriven, J. H. Neetling, M. C. Wagener, “Crack formation in Zn3As2 epilayers grown by MOVPE,” J. Cryst. Growth 216, 235–244 (2000).
[CrossRef]

Ravel, G.

F. Bertin, A. Chabli, E. Chiariglione, M. Burdin, M. Berger, T. Boudet, O. Lartigue, G. Ravel, “Spectroscopic ellipsometry with compensator and x-ray specular reflectivity for characterization of thin optical layers on transparent substrates,” Thin Solid Films 313–314, 68–72 (1998).
[CrossRef]

Roussel, Ph. J.

Ph. J. Roussel, J. Vanhellemont, H. E. Haes, “Numerical aspects of the implementation of effective medium approximation models in spectroscopic ellipsometry regression software,” Thin Solid Films 234, 423–427 (1993).

Scriven, G. J.

J. A. A. Engelbrecht, G. J. Scriven, J. H. Neetling, M. C. Wagener, “Crack formation in Zn3As2 epilayers grown by MOVPE,” J. Cryst. Growth 216, 235–244 (2000).
[CrossRef]

Sieberhagen, R.

D. J. Brink, H. W. Kunert, R. Sieberhagen, “Particle irradiation of doping superlattices: an optical investigation,” J. Appl. Phys. 88, 2326–2330 (2000).
[CrossRef]

Smit, J. E.

Stevenson, J. R.

M. Zivitz, J. R. Stevenson, “Optical properties of of the Cd3As2–Cd3P2 semiconductor alloy system,” Phys. Rev. B 10, 2457–2468 (1974).
[CrossRef]

Vanhellemont, J.

Ph. J. Roussel, J. Vanhellemont, H. E. Haes, “Numerical aspects of the implementation of effective medium approximation models in spectroscopic ellipsometry regression software,” Thin Solid Films 234, 423–427 (1993).

Wagener, M. C.

J. A. A. Engelbrecht, G. J. Scriven, J. H. Neetling, M. C. Wagener, “Crack formation in Zn3As2 epilayers grown by MOVPE,” J. Cryst. Growth 216, 235–244 (2000).
[CrossRef]

Woollam, J. A.

W. A. McGahan, B. Johs, J. A. Woollam, “Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films,” Thin Solid Films 234, 443–446 (1993).
[CrossRef]

Wrobel, J. M.

J. Misiewics, J. M. Wrobel, K. Jezierski, “Interband transitions in Zn3As2,” Solid State Commun. 86, 509–511 (1993).
[CrossRef]

Zivitz, M.

M. Zivitz, J. R. Stevenson, “Optical properties of of the Cd3As2–Cd3P2 semiconductor alloy system,” Phys. Rev. B 10, 2457–2468 (1974).
[CrossRef]

Anal. Phys. (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Anal. Phys. 5, 638–653 (1935).

Appl. Opt. (2)

J. Appl. Phys. (1)

D. J. Brink, H. W. Kunert, R. Sieberhagen, “Particle irradiation of doping superlattices: an optical investigation,” J. Appl. Phys. 88, 2326–2330 (2000).
[CrossRef]

J. Cryst. Growth (1)

J. A. A. Engelbrecht, G. J. Scriven, J. H. Neetling, M. C. Wagener, “Crack formation in Zn3As2 epilayers grown by MOVPE,” J. Cryst. Growth 216, 235–244 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. C (1)

K. Jezierski, “A linear equations algorithm for reflectivity extrapolation determination in Kramers-Kronig analysis,” J. Phys. C 17, 475–482 (1984).
[CrossRef]

Phys. Rev. B (2)

M. Zivitz, J. R. Stevenson, “Optical properties of of the Cd3As2–Cd3P2 semiconductor alloy system,” Phys. Rev. B 10, 2457–2468 (1974).
[CrossRef]

R. M. A. Azzam, N. M. Bashara, “Polarization characteristics of scattered radiation from a diffraction grating by ellipsometry with applications to surface roughness,” Phys. Rev. B 5, 4721–4729 (1972).
[CrossRef]

Solid State Commun. (1)

J. Misiewics, J. M. Wrobel, K. Jezierski, “Interband transitions in Zn3As2,” Solid State Commun. 86, 509–511 (1993).
[CrossRef]

Thin Solid Films (5)

S. M. F. Nee, T. Cole, “Effects of depolarization of polarimetric components on null ellipsometry,” Thin Solid Films 313–314, 90–96 (1998).
[CrossRef]

G. E. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234, 416–422 (1993).
[CrossRef]

F. Bertin, A. Chabli, E. Chiariglione, M. Burdin, M. Berger, T. Boudet, O. Lartigue, G. Ravel, “Spectroscopic ellipsometry with compensator and x-ray specular reflectivity for characterization of thin optical layers on transparent substrates,” Thin Solid Films 313–314, 68–72 (1998).
[CrossRef]

Ph. J. Roussel, J. Vanhellemont, H. E. Haes, “Numerical aspects of the implementation of effective medium approximation models in spectroscopic ellipsometry regression software,” Thin Solid Films 234, 423–427 (1993).

W. A. McGahan, B. Johs, J. A. Woollam, “Techniques for ellipsometric measurement of the thickness and optical constants of thin absorbing films,” Thin Solid Films 234, 443–446 (1993).
[CrossRef]

Other (1)

J. Misiewics, K. Jezierski, “Zinc arsenide (Zn3As2),” in Handbook of Optical Constants of Solids III, E. D. Palik, ed. (Academic, New York, 1998), pp. 595–607.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

AFM micrographs showing (a) the smoothest sample (S1, 2.5 µm thick) with rms area surface roughness of 143 ± 6 nm and (b) the roughest sample (S2, 5.5 µm thick) with rms area surface roughness of 510 ± 15 nm. The third sample has an intermediate appearance and roughness. In (a) the length bar represents 1042 nm and in (b) 2509 nm. For both figures the scanned areas are 10 µm × 10 µm.

Fig. 2
Fig. 2

Reduction of a rough film to an equivalent smooth structure based on an effective medium analysis.

Fig. 3
Fig. 3

Result of an Auger depth profile using Ar+ sputtering. Sputtering rate is roughly 0.5 nm/min. Relative concentrations of oxygen, zinc, and arsenic are shown as the surface is progressively eroded away.

Fig. 4
Fig. 4

Best-fit results according to Eq. (5) of (a) ellipsometer angle ψ and (b) ellipsometer angle Δ versus angle of incidence. All three samples are included. Zn3As2 film thickness, in micrometers, are indicated. Experimental points are shown as circles for S1 (2.5 µm), squares for S2 (5.5 µm), and triangles for S3 (13.5 µm).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Ei+Ei-S,P=ABBAS,PEj+Ej-S,P=IS,PEj+EJ-,
AS=Ni cosϕi+Nj cosϕj2Ni cosϕi, AP=Ni cosϕj+Nj cos ϕi2Ni cos ϕi, BS=Ni cos ϕi-Nj cos ϕj2Ni cos ϕi, BP=Ni cos ϕj-Nj cos ϕi2Ni cos ϕi,
Ej+Ej-=expiδj11exp-iδjEj+Ej-=TjEj+Ej-,
E0+E0-S,P=I01S,PT1I12S,PT2  Ef+Ef-=M11M12M21M22Ef+Ef-.
Q=yjψy,j-ψy,jδψy,j2+Δy,j-Δy,jδΔy,j2
Cμν=jAμjAνjδj2,
σμ=Γμμ, Γ=C-1.
NL=2.75±0.05-0.02±0.01i,NZ=3.75±0.08-0.8±0.1i,
NL=2.75±0.05-0.08±0.01i, NZ=3.95±0.06-1.0±0.1i.
NL=2.75±0.05-0.02±0.02i,NZ=3.75±0.15-0.8±0.2i,

Metrics