Abstract

A liquid-cell shearing interferometer was developed to measure refractive-index variations (Δn) in transparent materials. The cell was filled with a liquid having a matched refractive index. The achieved resolution was better than 1/1000 of a fringe shift and resulted in a Δn measurement sensitivity down to 10-7 for 1-mm-thick samples. A refractive-index increment in photothermorefractive glass of up to 5 × 10-6 was observed after UV exposure at 325 nm. A refractive-index decrement of up to 1 × 10-3 was observed after thermal development of the exposed sample. It was proved that photothermorefractive glass obeys the reciprocity law; i.e., Δn depends on the UV dosage but does not depend on the irradiance.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hariharan, “Practical recording materials,” in Optical Holography: Principles, Techniques, and Applications (Cambridge University, New York, 1996), Chap. 7, pp. 95–97.
    [CrossRef]
  2. K. O. Hill, Y. Fujii, D. C. Jhonson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  3. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [CrossRef] [PubMed]
  4. L. B. Glebov, “Photosensitive glass for phase hologram recording,” Glastech. Ber. 71C, 85–90 (1998).
  5. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619–627 (1999).
    [CrossRef]
  6. O. M. Efimov, L. B. Glebov, V. I. Smirnov, “High-frequency Bragg gratings in photothermorefractive glass,” Opt. Lett. 23, 1693–1695 (2000).
    [CrossRef]
  7. M. Born, E. Wolf, Principles of Optics (Cambridge University, Cambridge, UK, 1999), pp. 348–352.
  8. M. V. R. K. Murty, “The use of a single plane parallel plate as a lateral shearing interferometer with a visible gas laser source,” Appl. Opt. 3, 531–534 (1964).
    [CrossRef]
  9. D. W. Griffin, “Phase-shifting shearing interferometer,” Opt. Lett. 26, 140–141 (2001).
    [CrossRef]
  10. L. B. Glebov, V. G. Dokuchaev, N. V. Nikonorov, G. T. Petrovskii, “New effect of the interaction of optical radiation with glass,” Sov. Phys. Dokl. 29, 57–58 (1984).
  11. L. B. Glebov, V. G. Dokuchaev, N. V. Nikonorov, “Glass matrix strain caused by photoinduced charging of point defects,” J. Non-Cryst. Solids 128, 166–171 (1991).
    [CrossRef]
  12. A. O. Volchek, A. I. Gusarov, A. L. Diikov, F. N. Ignat’ev, “Change of the refractive index of silicate glasses under ionizing radiation,” Glass Phys. Chem. 21, 107–110 (1995).
  13. A. I. Gusarov, D. B. Doyle, “Radiation-induced wave-front aberrations: a new approach,” Appl. Opt. 37, 643–648 (1998).
    [CrossRef]
  14. A. V. Dotsenko, L. B. Glebov, V. A. Tsekhomsky, Physics and Chemistry of Photochromic Glasses (CRC Press, Boca Raton, Fla., 1997).
  15. N. Mott, R. W. Gurney, Electronic Processes in Crystals (Oxford University, Oxford, UK, 1948), Chap. 7.
  16. L. B. Glebov, M. N. Tolstoi, “Spectra of formation of color centers in laser glasses,” Sov. J. Quantum Electron. 4, 65–67 (1974).
    [CrossRef]
  17. A. P. Gagarin, L. B. Glebov, O. M. Efimov, O. S. Efimova, “Formation of color centers in sodium calcium silicate glasses with the nonlinear absorption of powerful UV radiation,” Sov. J. Glass Phys. Chem. 5, 337–340 (1979).

2001 (1)

2000 (1)

O. M. Efimov, L. B. Glebov, V. I. Smirnov, “High-frequency Bragg gratings in photothermorefractive glass,” Opt. Lett. 23, 1693–1695 (2000).
[CrossRef]

1999 (1)

1998 (2)

L. B. Glebov, “Photosensitive glass for phase hologram recording,” Glastech. Ber. 71C, 85–90 (1998).

A. I. Gusarov, D. B. Doyle, “Radiation-induced wave-front aberrations: a new approach,” Appl. Opt. 37, 643–648 (1998).
[CrossRef]

1995 (1)

A. O. Volchek, A. I. Gusarov, A. L. Diikov, F. N. Ignat’ev, “Change of the refractive index of silicate glasses under ionizing radiation,” Glass Phys. Chem. 21, 107–110 (1995).

1991 (1)

L. B. Glebov, V. G. Dokuchaev, N. V. Nikonorov, “Glass matrix strain caused by photoinduced charging of point defects,” J. Non-Cryst. Solids 128, 166–171 (1991).
[CrossRef]

1989 (1)

1984 (1)

L. B. Glebov, V. G. Dokuchaev, N. V. Nikonorov, G. T. Petrovskii, “New effect of the interaction of optical radiation with glass,” Sov. Phys. Dokl. 29, 57–58 (1984).

1979 (1)

A. P. Gagarin, L. B. Glebov, O. M. Efimov, O. S. Efimova, “Formation of color centers in sodium calcium silicate glasses with the nonlinear absorption of powerful UV radiation,” Sov. J. Glass Phys. Chem. 5, 337–340 (1979).

1978 (1)

K. O. Hill, Y. Fujii, D. C. Jhonson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

1974 (1)

L. B. Glebov, M. N. Tolstoi, “Spectra of formation of color centers in laser glasses,” Sov. J. Quantum Electron. 4, 65–67 (1974).
[CrossRef]

1964 (1)

Born, M.

M. Born, E. Wolf, Principles of Optics (Cambridge University, Cambridge, UK, 1999), pp. 348–352.

Diikov, A. L.

A. O. Volchek, A. I. Gusarov, A. L. Diikov, F. N. Ignat’ev, “Change of the refractive index of silicate glasses under ionizing radiation,” Glass Phys. Chem. 21, 107–110 (1995).

Dokuchaev, V. G.

L. B. Glebov, V. G. Dokuchaev, N. V. Nikonorov, “Glass matrix strain caused by photoinduced charging of point defects,” J. Non-Cryst. Solids 128, 166–171 (1991).
[CrossRef]

L. B. Glebov, V. G. Dokuchaev, N. V. Nikonorov, G. T. Petrovskii, “New effect of the interaction of optical radiation with glass,” Sov. Phys. Dokl. 29, 57–58 (1984).

Dotsenko, A. V.

A. V. Dotsenko, L. B. Glebov, V. A. Tsekhomsky, Physics and Chemistry of Photochromic Glasses (CRC Press, Boca Raton, Fla., 1997).

Doyle, D. B.

Efimov, O. M.

O. M. Efimov, L. B. Glebov, V. I. Smirnov, “High-frequency Bragg gratings in photothermorefractive glass,” Opt. Lett. 23, 1693–1695 (2000).
[CrossRef]

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619–627 (1999).
[CrossRef]

A. P. Gagarin, L. B. Glebov, O. M. Efimov, O. S. Efimova, “Formation of color centers in sodium calcium silicate glasses with the nonlinear absorption of powerful UV radiation,” Sov. J. Glass Phys. Chem. 5, 337–340 (1979).

Efimova, O. S.

A. P. Gagarin, L. B. Glebov, O. M. Efimov, O. S. Efimova, “Formation of color centers in sodium calcium silicate glasses with the nonlinear absorption of powerful UV radiation,” Sov. J. Glass Phys. Chem. 5, 337–340 (1979).

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Jhonson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Gagarin, A. P.

A. P. Gagarin, L. B. Glebov, O. M. Efimov, O. S. Efimova, “Formation of color centers in sodium calcium silicate glasses with the nonlinear absorption of powerful UV radiation,” Sov. J. Glass Phys. Chem. 5, 337–340 (1979).

Glebov, L. B.

O. M. Efimov, L. B. Glebov, V. I. Smirnov, “High-frequency Bragg gratings in photothermorefractive glass,” Opt. Lett. 23, 1693–1695 (2000).
[CrossRef]

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619–627 (1999).
[CrossRef]

L. B. Glebov, “Photosensitive glass for phase hologram recording,” Glastech. Ber. 71C, 85–90 (1998).

L. B. Glebov, V. G. Dokuchaev, N. V. Nikonorov, “Glass matrix strain caused by photoinduced charging of point defects,” J. Non-Cryst. Solids 128, 166–171 (1991).
[CrossRef]

L. B. Glebov, V. G. Dokuchaev, N. V. Nikonorov, G. T. Petrovskii, “New effect of the interaction of optical radiation with glass,” Sov. Phys. Dokl. 29, 57–58 (1984).

A. P. Gagarin, L. B. Glebov, O. M. Efimov, O. S. Efimova, “Formation of color centers in sodium calcium silicate glasses with the nonlinear absorption of powerful UV radiation,” Sov. J. Glass Phys. Chem. 5, 337–340 (1979).

L. B. Glebov, M. N. Tolstoi, “Spectra of formation of color centers in laser glasses,” Sov. J. Quantum Electron. 4, 65–67 (1974).
[CrossRef]

A. V. Dotsenko, L. B. Glebov, V. A. Tsekhomsky, Physics and Chemistry of Photochromic Glasses (CRC Press, Boca Raton, Fla., 1997).

Glebova, L. N.

Glenn, W. H.

Griffin, D. W.

Gurney, R. W.

N. Mott, R. W. Gurney, Electronic Processes in Crystals (Oxford University, Oxford, UK, 1948), Chap. 7.

Gusarov, A. I.

A. I. Gusarov, D. B. Doyle, “Radiation-induced wave-front aberrations: a new approach,” Appl. Opt. 37, 643–648 (1998).
[CrossRef]

A. O. Volchek, A. I. Gusarov, A. L. Diikov, F. N. Ignat’ev, “Change of the refractive index of silicate glasses under ionizing radiation,” Glass Phys. Chem. 21, 107–110 (1995).

Hariharan, P.

P. Hariharan, “Practical recording materials,” in Optical Holography: Principles, Techniques, and Applications (Cambridge University, New York, 1996), Chap. 7, pp. 95–97.
[CrossRef]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Jhonson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Ignat’ev, F. N.

A. O. Volchek, A. I. Gusarov, A. L. Diikov, F. N. Ignat’ev, “Change of the refractive index of silicate glasses under ionizing radiation,” Glass Phys. Chem. 21, 107–110 (1995).

Jhonson, D. C.

K. O. Hill, Y. Fujii, D. C. Jhonson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Jhonson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Meltz, G.

Morey, W. W.

Mott, N.

N. Mott, R. W. Gurney, Electronic Processes in Crystals (Oxford University, Oxford, UK, 1948), Chap. 7.

Murty, M. V. R. K.

Nikonorov, N. V.

L. B. Glebov, V. G. Dokuchaev, N. V. Nikonorov, “Glass matrix strain caused by photoinduced charging of point defects,” J. Non-Cryst. Solids 128, 166–171 (1991).
[CrossRef]

L. B. Glebov, V. G. Dokuchaev, N. V. Nikonorov, G. T. Petrovskii, “New effect of the interaction of optical radiation with glass,” Sov. Phys. Dokl. 29, 57–58 (1984).

Petrovskii, G. T.

L. B. Glebov, V. G. Dokuchaev, N. V. Nikonorov, G. T. Petrovskii, “New effect of the interaction of optical radiation with glass,” Sov. Phys. Dokl. 29, 57–58 (1984).

Richardson, K. C.

Smirnov, V. I.

O. M. Efimov, L. B. Glebov, V. I. Smirnov, “High-frequency Bragg gratings in photothermorefractive glass,” Opt. Lett. 23, 1693–1695 (2000).
[CrossRef]

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619–627 (1999).
[CrossRef]

Tolstoi, M. N.

L. B. Glebov, M. N. Tolstoi, “Spectra of formation of color centers in laser glasses,” Sov. J. Quantum Electron. 4, 65–67 (1974).
[CrossRef]

Tsekhomsky, V. A.

A. V. Dotsenko, L. B. Glebov, V. A. Tsekhomsky, Physics and Chemistry of Photochromic Glasses (CRC Press, Boca Raton, Fla., 1997).

Volchek, A. O.

A. O. Volchek, A. I. Gusarov, A. L. Diikov, F. N. Ignat’ev, “Change of the refractive index of silicate glasses under ionizing radiation,” Glass Phys. Chem. 21, 107–110 (1995).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Cambridge University, Cambridge, UK, 1999), pp. 348–352.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Jhonson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Glass Phys. Chem. (1)

A. O. Volchek, A. I. Gusarov, A. L. Diikov, F. N. Ignat’ev, “Change of the refractive index of silicate glasses under ionizing radiation,” Glass Phys. Chem. 21, 107–110 (1995).

Glastech. Ber. (1)

L. B. Glebov, “Photosensitive glass for phase hologram recording,” Glastech. Ber. 71C, 85–90 (1998).

J. Non-Cryst. Solids (1)

L. B. Glebov, V. G. Dokuchaev, N. V. Nikonorov, “Glass matrix strain caused by photoinduced charging of point defects,” J. Non-Cryst. Solids 128, 166–171 (1991).
[CrossRef]

Opt. Lett. (3)

Sov. J. Glass Phys. Chem. (1)

A. P. Gagarin, L. B. Glebov, O. M. Efimov, O. S. Efimova, “Formation of color centers in sodium calcium silicate glasses with the nonlinear absorption of powerful UV radiation,” Sov. J. Glass Phys. Chem. 5, 337–340 (1979).

Sov. J. Quantum Electron. (1)

L. B. Glebov, M. N. Tolstoi, “Spectra of formation of color centers in laser glasses,” Sov. J. Quantum Electron. 4, 65–67 (1974).
[CrossRef]

Sov. Phys. Dokl. (1)

L. B. Glebov, V. G. Dokuchaev, N. V. Nikonorov, G. T. Petrovskii, “New effect of the interaction of optical radiation with glass,” Sov. Phys. Dokl. 29, 57–58 (1984).

Other (4)

M. Born, E. Wolf, Principles of Optics (Cambridge University, Cambridge, UK, 1999), pp. 348–352.

P. Hariharan, “Practical recording materials,” in Optical Holography: Principles, Techniques, and Applications (Cambridge University, New York, 1996), Chap. 7, pp. 95–97.
[CrossRef]

A. V. Dotsenko, L. B. Glebov, V. A. Tsekhomsky, Physics and Chemistry of Photochromic Glasses (CRC Press, Boca Raton, Fla., 1997).

N. Mott, R. W. Gurney, Electronic Processes in Crystals (Oxford University, Oxford, UK, 1948), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Liquid cell for shearing interferometer: 1 and 2, front and back windows, respectively; 3, matching liquid; 4, sample; 5, laser probe beam; 6, interference pattern; 7, elastic gasket.

Fig. 2
Fig. 2

Liquid-cell shearing interferometer: 1, He–Ne laser at 633 nm; 2, diffractive attenuator; 3, beam expander and spatial filter; 4, liquid cell; 5, CCD camera.

Fig. 3
Fig. 3

Interference pattern from the virgin sample of PTR glass (1-mm thickness).

Fig. 4
Fig. 4

Spatial profiles of the refractive index in the virgin sample of PTR glass: 1, single recording of the interference pattern at CCD camera; 2, combined result of two recordings; 3, averaging by 11 neighboring pixels at the CCD. Curves 2 and 3 are shifted up for 2 × 10-6 and 4 × 10-6, respectively.

Fig. 5
Fig. 5

Interference pattern from PTR glass (1-mm thickness) exposed to the straight stripe with a lateral Gaussian profile (half-width 1/e 2 M = 1.24 mm) of the He–Cd laser at 325 nm for the maximum dosage of 600 mJ/cm2 in the center of the stripe and thermally developed for 2 h at 520 °C. The laser beam was scanned across the sample in the horizontal direction.

Fig. 6
Fig. 6

Profiles of the dosage of laser radiation at 1, 325 nm and induced refractive index at 2, 633 nm in the exposed sample of PTR glass.

Fig. 7
Fig. 7

Induced refractive-index profile in PTR glass exposed to radiation at 325 nm with maximum exposures of 115 and 600 mJ/cm2 (no thermal development).

Fig. 8
Fig. 8

Dependence of the refractive-index decrement on the dosage of exciting radiation at 325 nm for different values of maximum irradiance. Circles, 20 mW/cm2; triangles, 4 mW/cm2; squares, 1 mW/cm2. The thermal development was 2 h at 520 °C.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Iy=Imax exp-2 y2ω2,
V=2πPωDmax,
Dy=Dmax exp-2 y2ω2.
Δn=λΔS2t,

Metrics