Abstract

When two or more monomers with different densities and refractive indices are polymerized under a centrifugal force field, a radially varying refractive index is generated owing to the difference in density of the monomers. After the polymerization is completed, a cavity is generated about the rotational axis as a result of inherent volume shrinkage during bulk radical polymerization. Therefore it is necessary to feed an additional monomer into the cavity to compensate for the undesirable volume shrinkage. We have successfully fabricated a preform with graded indices for polymer optical fiber without a cavity by adding another monomer during rotation of the reactor. One can control the overall refractive-index profile by changing the rotation speed. Furthermore, the refractive-index profile can be predicted as a function of rotating speed by use of a simple mathematical model.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics (Addison-Wesley, San Diego, Calif., 1990), Chap. 5.
  2. K. C. Kao, G. A. Hockham, “Dielectric-fiber surface waveguides for optical frequencies,” Proc. IEE (London)113, 1151–1158 (1996).
  3. C. Emslie, “Review: polymer optical fibres,” J. Mater. Sci. 23, 2281–2293 (1988).
    [CrossRef]
  4. Y. Koike, Y. Takezawa, Y. Ohtsuka, “New interfacial-gel copolymerization technique for steric GRIN polymer optical waveguides and lens array,” Appl. Opt. 27, 486–491 (1988).
    [CrossRef] [PubMed]
  5. Y. Koike, E. Nihei, “Graded-index optical fiber by new random copolymerization technique,” in Plastic Optical Fibers, M. Kitazawa, J. F. Kriedl, R. E. Steele, eds., Proc. SPIE1592, 62–72 (1991).
    [CrossRef]
  6. T. Ishigure, A. Horibe, E. Nihei, Y. Koike, “High-bandwidth, high-numerical aperture graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1686–1691 (1995).
    [CrossRef]
  7. M. Sato, M. Hirai, T. Ishigure, “High temperature resistant graded-index polymer optical fiber,” J. Lightwave Technol. 18, 2139–2145 (2000).
    [CrossRef]
  8. M. Sato, T. Ishigure, Y. Koike, “Thermally stable high-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 18, 952–958 (2000).
    [CrossRef]
  9. E. Nihei, T. Ishigure, Y. Koike, “High-bandwidth, graded-index polymer optical fiber for near-infrared use,” Appl. Opt. 35, 7085–7090 (1996).
    [CrossRef] [PubMed]
  10. S. P. Wu, E. Nihei, Y. Koike, “Large radial graded-index polymer,” Appl. Opt. 35, 28–32 (1996).
    [CrossRef] [PubMed]
  11. T. Ishigure, E. Nihei, Y. Koike, “Optimum refractive-index profile of the graded-index polymer optical fiber, toward gigabit data links,” Appl. Opt. 35, 2048–2053 (1996).
    [CrossRef] [PubMed]
  12. T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
    [CrossRef] [PubMed]
  13. T. Ishigure, E. Nihei, Y. Koike, “Optimization of the refractive-index distribution of high-bandwidth GI polymer optical fiber based on both modal and material dispersions,” Polym. J. 28, 272–275 (1996).
    [CrossRef]
  14. C.-W. Park, B. S. Lee, S. K. Wallker, W. Y. Choi, “A new processing method for the fabrication of cylindrical objects with radially varying properties,” Ind. Eng. Chem. Res. 39, 79–83 (2000).
    [CrossRef]
  15. F. G. H. van Duijnhoven, C. W. M. Bastiaansen, “Monomers and polymers in a centrifugal field: a new method to produce refractive-index gradients in polymers,” Appl. Opt. 38, 1008–1014 (1999).
    [CrossRef]
  16. R. F. Pronstein, Physicochemical Hydrodynamics, 2nd ed. (Wiley, New York, 1994), Chap. 5.
    [CrossRef]
  17. G. Odian, Principles of Polymerization, 3rd ed. (Wiley, New York, 1991), Chap. 3.
  18. G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, New York, 1991), Chap. 2.
  19. A. Tagaya, S. Teramoto, E. Nihei, “High-power and high-gain organic dye-doped polymer optical fiber amplifiers: novel techniques for preparation and spectral investigation,” Appl. Opt. 36, 572–578 (1997).
    [CrossRef] [PubMed]
  20. A. Tagaya, Y. Koike, E. Nihei, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
    [CrossRef] [PubMed]
  21. Y. Koike, A. Kanemitsu, A. Shioda, “Spherical gradient-index polymer lens with low spherical-abberation,” Appl. Opt. 33, 3394–3400 (1994).
    [CrossRef] [PubMed]

2000

1999

1997

1996

1995

A. Tagaya, Y. Koike, E. Nihei, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
[CrossRef] [PubMed]

T. Ishigure, A. Horibe, E. Nihei, Y. Koike, “High-bandwidth, high-numerical aperture graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1686–1691 (1995).
[CrossRef]

1994

1988

Bastiaansen, C. W. M.

Choi, W. Y.

C.-W. Park, B. S. Lee, S. K. Wallker, W. Y. Choi, “A new processing method for the fabrication of cylindrical objects with radially varying properties,” Ind. Eng. Chem. Res. 39, 79–83 (2000).
[CrossRef]

Emslie, C.

C. Emslie, “Review: polymer optical fibres,” J. Mater. Sci. 23, 2281–2293 (1988).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Addison-Wesley, San Diego, Calif., 1990), Chap. 5.

Hirai, M.

Horibe, A.

T. Ishigure, A. Horibe, E. Nihei, Y. Koike, “High-bandwidth, high-numerical aperture graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1686–1691 (1995).
[CrossRef]

Ishigure, T.

Kanemitsu, A.

Keiser, G.

G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, New York, 1991), Chap. 2.

Koike, Y.

M. Sato, T. Ishigure, Y. Koike, “Thermally stable high-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 18, 952–958 (2000).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, “Optimum refractive-index profile of the graded-index polymer optical fiber, toward gigabit data links,” Appl. Opt. 35, 2048–2053 (1996).
[CrossRef] [PubMed]

T. Ishigure, E. Nihei, Y. Koike, “Optimization of the refractive-index distribution of high-bandwidth GI polymer optical fiber based on both modal and material dispersions,” Polym. J. 28, 272–275 (1996).
[CrossRef]

E. Nihei, T. Ishigure, Y. Koike, “High-bandwidth, graded-index polymer optical fiber for near-infrared use,” Appl. Opt. 35, 7085–7090 (1996).
[CrossRef] [PubMed]

S. P. Wu, E. Nihei, Y. Koike, “Large radial graded-index polymer,” Appl. Opt. 35, 28–32 (1996).
[CrossRef] [PubMed]

A. Tagaya, Y. Koike, E. Nihei, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
[CrossRef] [PubMed]

T. Ishigure, A. Horibe, E. Nihei, Y. Koike, “High-bandwidth, high-numerical aperture graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1686–1691 (1995).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
[CrossRef] [PubMed]

Y. Koike, A. Kanemitsu, A. Shioda, “Spherical gradient-index polymer lens with low spherical-abberation,” Appl. Opt. 33, 3394–3400 (1994).
[CrossRef] [PubMed]

Y. Koike, Y. Takezawa, Y. Ohtsuka, “New interfacial-gel copolymerization technique for steric GRIN polymer optical waveguides and lens array,” Appl. Opt. 27, 486–491 (1988).
[CrossRef] [PubMed]

Y. Koike, E. Nihei, “Graded-index optical fiber by new random copolymerization technique,” in Plastic Optical Fibers, M. Kitazawa, J. F. Kriedl, R. E. Steele, eds., Proc. SPIE1592, 62–72 (1991).
[CrossRef]

Lee, B. S.

C.-W. Park, B. S. Lee, S. K. Wallker, W. Y. Choi, “A new processing method for the fabrication of cylindrical objects with radially varying properties,” Ind. Eng. Chem. Res. 39, 79–83 (2000).
[CrossRef]

Nihei, E.

A. Tagaya, S. Teramoto, E. Nihei, “High-power and high-gain organic dye-doped polymer optical fiber amplifiers: novel techniques for preparation and spectral investigation,” Appl. Opt. 36, 572–578 (1997).
[CrossRef] [PubMed]

S. P. Wu, E. Nihei, Y. Koike, “Large radial graded-index polymer,” Appl. Opt. 35, 28–32 (1996).
[CrossRef] [PubMed]

T. Ishigure, E. Nihei, Y. Koike, “Optimization of the refractive-index distribution of high-bandwidth GI polymer optical fiber based on both modal and material dispersions,” Polym. J. 28, 272–275 (1996).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, “Optimum refractive-index profile of the graded-index polymer optical fiber, toward gigabit data links,” Appl. Opt. 35, 2048–2053 (1996).
[CrossRef] [PubMed]

E. Nihei, T. Ishigure, Y. Koike, “High-bandwidth, graded-index polymer optical fiber for near-infrared use,” Appl. Opt. 35, 7085–7090 (1996).
[CrossRef] [PubMed]

A. Tagaya, Y. Koike, E. Nihei, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
[CrossRef] [PubMed]

T. Ishigure, A. Horibe, E. Nihei, Y. Koike, “High-bandwidth, high-numerical aperture graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1686–1691 (1995).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
[CrossRef] [PubMed]

Y. Koike, E. Nihei, “Graded-index optical fiber by new random copolymerization technique,” in Plastic Optical Fibers, M. Kitazawa, J. F. Kriedl, R. E. Steele, eds., Proc. SPIE1592, 62–72 (1991).
[CrossRef]

Odian, G.

G. Odian, Principles of Polymerization, 3rd ed. (Wiley, New York, 1991), Chap. 3.

Ohtsuka, Y.

Park, C.-W.

C.-W. Park, B. S. Lee, S. K. Wallker, W. Y. Choi, “A new processing method for the fabrication of cylindrical objects with radially varying properties,” Ind. Eng. Chem. Res. 39, 79–83 (2000).
[CrossRef]

Pronstein, R. F.

R. F. Pronstein, Physicochemical Hydrodynamics, 2nd ed. (Wiley, New York, 1994), Chap. 5.
[CrossRef]

Sato, M.

Shioda, A.

Tagaya, A.

Takezawa, Y.

Teramoto, S.

van Duijnhoven, F. G. H.

Wallker, S. K.

C.-W. Park, B. S. Lee, S. K. Wallker, W. Y. Choi, “A new processing method for the fabrication of cylindrical objects with radially varying properties,” Ind. Eng. Chem. Res. 39, 79–83 (2000).
[CrossRef]

Wu, S. P.

Appl. Opt.

Y. Koike, Y. Takezawa, Y. Ohtsuka, “New interfacial-gel copolymerization technique for steric GRIN polymer optical waveguides and lens array,” Appl. Opt. 27, 486–491 (1988).
[CrossRef] [PubMed]

Y. Koike, A. Kanemitsu, A. Shioda, “Spherical gradient-index polymer lens with low spherical-abberation,” Appl. Opt. 33, 3394–3400 (1994).
[CrossRef] [PubMed]

T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
[CrossRef] [PubMed]

A. Tagaya, S. Teramoto, E. Nihei, “High-power and high-gain organic dye-doped polymer optical fiber amplifiers: novel techniques for preparation and spectral investigation,” Appl. Opt. 36, 572–578 (1997).
[CrossRef] [PubMed]

F. G. H. van Duijnhoven, C. W. M. Bastiaansen, “Monomers and polymers in a centrifugal field: a new method to produce refractive-index gradients in polymers,” Appl. Opt. 38, 1008–1014 (1999).
[CrossRef]

A. Tagaya, Y. Koike, E. Nihei, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
[CrossRef] [PubMed]

T. Ishigure, E. Nihei, Y. Koike, “Optimum refractive-index profile of the graded-index polymer optical fiber, toward gigabit data links,” Appl. Opt. 35, 2048–2053 (1996).
[CrossRef] [PubMed]

S. P. Wu, E. Nihei, Y. Koike, “Large radial graded-index polymer,” Appl. Opt. 35, 28–32 (1996).
[CrossRef] [PubMed]

E. Nihei, T. Ishigure, Y. Koike, “High-bandwidth, graded-index polymer optical fiber for near-infrared use,” Appl. Opt. 35, 7085–7090 (1996).
[CrossRef] [PubMed]

Ind. Eng. Chem. Res.

C.-W. Park, B. S. Lee, S. K. Wallker, W. Y. Choi, “A new processing method for the fabrication of cylindrical objects with radially varying properties,” Ind. Eng. Chem. Res. 39, 79–83 (2000).
[CrossRef]

J. Lightwave Technol.

J. Mater. Sci.

C. Emslie, “Review: polymer optical fibres,” J. Mater. Sci. 23, 2281–2293 (1988).
[CrossRef]

Polym. J.

T. Ishigure, E. Nihei, Y. Koike, “Optimization of the refractive-index distribution of high-bandwidth GI polymer optical fiber based on both modal and material dispersions,” Polym. J. 28, 272–275 (1996).
[CrossRef]

Other

Y. Koike, E. Nihei, “Graded-index optical fiber by new random copolymerization technique,” in Plastic Optical Fibers, M. Kitazawa, J. F. Kriedl, R. E. Steele, eds., Proc. SPIE1592, 62–72 (1991).
[CrossRef]

E. Hecht, Optics (Addison-Wesley, San Diego, Calif., 1990), Chap. 5.

K. C. Kao, G. A. Hockham, “Dielectric-fiber surface waveguides for optical frequencies,” Proc. IEE (London)113, 1151–1158 (1996).

R. F. Pronstein, Physicochemical Hydrodynamics, 2nd ed. (Wiley, New York, 1994), Chap. 5.
[CrossRef]

G. Odian, Principles of Polymerization, 3rd ed. (Wiley, New York, 1991), Chap. 3.

G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, New York, 1991), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Volume shrinkage versus time and conversion.

Fig. 2
Fig. 2

Viscosity versus time and conversion.

Fig. 3
Fig. 3

Cavity generated by centrifugal force about the rotating axis.

Fig. 4
Fig. 4

1H-NMR spectrum of copolymer.

Fig. 5
Fig. 5

Composition (C PMMA/C 0) of a preform versus radial distance.

Fig. 6
Fig. 6

Refractive index (RI) versus weight fraction (wt. frac.) of PS by Abbe’s refractometer.

Fig. 7
Fig. 7

Refractive index versus radial distance [solid and dotted curves are plotted from Eq. (5)].

Fig. 8
Fig. 8

Composition versus radial distance (filled circles and open inverse triangles are experimental data; curves are simulated data with various values of α).

Fig. 9
Fig. 9

Refractive index versus radial distance [symbols, Eq. (4); curves, Eq. (5)].

Tables (2)

Tables Icon

Table 1 Profile Parameter and Index Difference versus Rotating Speed

Tables Icon

Table 2 Profile Parameter and Index Difference versus Dimensionless Parameter

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ct=1rrrD Cr-Csω2r,
C=C0, 0r<R, t=0.
DCrr=0=0, DCrr=R=sω2RCR, t>0.
C*=α expαr*2expα-1,
nr=n01-2ΔrRcγ1/2.
Δ=n02-n122n02n0-n1n0.

Metrics