Abstract

The dependence of spectral broadening of an ultrashort-pulsed laser beam on the fiber length and the illumination power is experimentally characterized in order to deliver the laser for two-photon fluorescence microscopy. It is found that not only the spectral width but also the spectral blue shift increases with the fiber length and illumination power, owing to the nonlinear response in the fiber. For an illumination power of 400 mW in a 3-m-long single-mode fiber, the spectral blue shift is as large as 15 nm. Such a spectral blue shift enhances the contribution from the short-wavelength components within the pulsed beam and leads to an improvement in resolution under two-photon excitation, whereas the efficiency of two-photon excitation is slightly reduced because of the temporal broadening of the pulsed beam. The experimental measurement of the axial response to a two-photon fluorescence polymer block confirms this feature.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–75 (1990).
    [CrossRef] [PubMed]
  2. D. W. Piston, M. S. Kirby, H. Cheng, W. J. Lederer, “Two-photon-excitation fluorescence imaging of three-dimensional calcium-ion activity,” Appl. Opt. 33, 662–669 (1994).
    [CrossRef] [PubMed]
  3. P. T. C. So, H. Kim, I. E. Kochevar, “Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures,” Opt. Express 3, 339–350 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  4. T. Dabbs, M. Glass, “Single-mode fibers used as confocal microscope pinholes,” Appl. Opt. 31, 705–706 (1992).
    [CrossRef] [PubMed]
  5. P. M. Delaney, M. R. Harris, R. G. King, “Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging,” Appl. Opt. 33, 573–577 (1994).
    [CrossRef] [PubMed]
  6. M. Gu, C. J. R. Sheppard, X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A 8, 1755–1761 (1991).
    [CrossRef]
  7. M. Gu, D. K. Bird, “Fibre-optical double-pass confocal microscopy,” Opt. Laser Technol. 30, 91–93 (1998).
    [CrossRef]
  8. A. F. Gmitro, D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18, 565–567 (1993).
    [CrossRef] [PubMed]
  9. A. Lago, A. T. Obeidat, A. E. Kaplan, J. B. Khurigan, P. L. Shkolnikov, “Two-photon-induced fluorescence of biological markers based on optical fibers,” Opt. Lett. 20, 2054–2056 (1995).
    [CrossRef] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  11. S. W. Hell, M. Booth, S. Wilms, C. M. Schnetter, A. K. Kirsch, D. J. Arndtjovin, T. M. Jovin, “Two-photon near- and far-field fluorescence microscopy with continuous-wave excitation,” Opt. Lett. 23, 1238–1240 (1998).
    [CrossRef]
  12. R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon, “Characterisation and optimisation of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
    [CrossRef]
  13. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).
  14. M. Gu, T. Tannous, C. J. R. Sheppard, “Three-dimensional confocal fluorescence imaging under ultrashort pulse illumination,” Opt. Commun. 117, 406–412 (1995).
    [CrossRef]
  15. D. Day, M. Gu, “Effects of refractive-index mismatch on three-dimensional optical data storage density in a two-photon bleaching polymer,” Appl. Opt. 37, 6299–6304 (1998).
    [CrossRef]
  16. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

1998 (5)

1995 (2)

A. Lago, A. T. Obeidat, A. E. Kaplan, J. B. Khurigan, P. L. Shkolnikov, “Two-photon-induced fluorescence of biological markers based on optical fibers,” Opt. Lett. 20, 2054–2056 (1995).
[CrossRef] [PubMed]

M. Gu, T. Tannous, C. J. R. Sheppard, “Three-dimensional confocal fluorescence imaging under ultrashort pulse illumination,” Opt. Commun. 117, 406–412 (1995).
[CrossRef]

1994 (2)

1993 (1)

1992 (1)

1991 (1)

1990 (1)

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–75 (1990).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

Arndtjovin, D. J.

Aziz, D.

Bird, D. K.

M. Gu, D. K. Bird, “Fibre-optical double-pass confocal microscopy,” Opt. Laser Technol. 30, 91–93 (1998).
[CrossRef]

Booth, M.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Cheng, H.

Dabbs, T.

Day, D.

Delaney, P. M.

Denk, W.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–75 (1990).
[CrossRef] [PubMed]

Feurer, T.

R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon, “Characterisation and optimisation of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[CrossRef]

Gan, X.

Glass, M.

Gmitro, A. F.

Gu, M.

M. Gu, D. K. Bird, “Fibre-optical double-pass confocal microscopy,” Opt. Laser Technol. 30, 91–93 (1998).
[CrossRef]

D. Day, M. Gu, “Effects of refractive-index mismatch on three-dimensional optical data storage density in a two-photon bleaching polymer,” Appl. Opt. 37, 6299–6304 (1998).
[CrossRef]

M. Gu, T. Tannous, C. J. R. Sheppard, “Three-dimensional confocal fluorescence imaging under ultrashort pulse illumination,” Opt. Commun. 117, 406–412 (1995).
[CrossRef]

M. Gu, C. J. R. Sheppard, X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A 8, 1755–1761 (1991).
[CrossRef]

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).

Harris, M. R.

Hell, S. W.

Jovin, T. M.

Kaplan, A. E.

Khurigan, J. B.

Kim, H.

King, R. G.

Kirby, M. S.

Kirsch, A. K.

Kochevar, I. E.

Lago, A.

Lederer, W. J.

Obeidat, A. T.

Piston, D. W.

Sauerbrey, R.

R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon, “Characterisation and optimisation of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[CrossRef]

Schnetter, C. M.

Sheppard, C. J. R.

M. Gu, T. Tannous, C. J. R. Sheppard, “Three-dimensional confocal fluorescence imaging under ultrashort pulse illumination,” Opt. Commun. 117, 406–412 (1995).
[CrossRef]

M. Gu, C. J. R. Sheppard, X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A 8, 1755–1761 (1991).
[CrossRef]

Shkolnikov, P. L.

Simon, U.

R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon, “Characterisation and optimisation of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[CrossRef]

So, P. T. C.

Strickler, J. H.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–75 (1990).
[CrossRef] [PubMed]

Tannous, T.

M. Gu, T. Tannous, C. J. R. Sheppard, “Three-dimensional confocal fluorescence imaging under ultrashort pulse illumination,” Opt. Commun. 117, 406–412 (1995).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–75 (1990).
[CrossRef] [PubMed]

Wilms, S.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Wolleschensky, R.

R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon, “Characterisation and optimisation of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon, “Characterisation and optimisation of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

M. Gu, T. Tannous, C. J. R. Sheppard, “Three-dimensional confocal fluorescence imaging under ultrashort pulse illumination,” Opt. Commun. 117, 406–412 (1995).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

M. Gu, D. K. Bird, “Fibre-optical double-pass confocal microscopy,” Opt. Laser Technol. 30, 91–93 (1998).
[CrossRef]

Opt. Lett. (3)

Science (1)

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–75 (1990).
[CrossRef] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. O1 and O2, 10× 0.25-N.A. microscope objectives; ND1 and ND2, neutral-density filters; BS1, beam splitter.

Fig. 2
Fig. 2

Laser coupling efficiency for 1-, 2-, and 3-m lengths of the 785-nm single- mode fiber.

Fig. 3
Fig. 3

Recorded spectral profiles of a pulse after propagation through a fiber length of 3 m for various input powers. The original pulse spectrum is included for comparison.

Fig. 4
Fig. 4

Spectral FWHM as a function of the input power for 1-, 2-, and 3-m lengths of the 785-nm single-mode fiber.

Fig. 5
Fig. 5

Spectral blue shift, Δλ, as a function of input power for 1-, 2-, and 3-m lengths of the 785-nm single-mode fiber.

Fig. 6
Fig. 6

Two-photon excitation efficiency for 1-, 2-, and 3-m lengths of the 785-nm single-mode fiber.

Fig. 7
Fig. 7

Axial responses to the photobleaching polymer under two-photon excitation for a 3-m length of the 785-nm single-mode fiber with the input power of (a) 100, (b) 200, (c) 300, and (d) 400 mW.

Fig. 8
Fig. 8

Axial resolution Δx as a function of the input power for 1-, 2-, and 3-m lengths of the 785-nm single-mode fiber.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

IfPavg2τF.

Metrics