Abstract

We report on the influence of the dielectric substrate on the performance of microstrip dipole-antenna-coupled microbolometers. The location, the width, and the magnitude of the resonance of a printed dipole are altered when the dielectric substrate is backed by a ground plane. A thicker dielectric substrate shifts the antenna resonance toward shorter dipole lengths and leads to a stronger and slower detector response. The incorporation of an air layer into the antenna substrate further increases thermal impedance, leading to an even stronger response and shifting the antenna resonance toward longer dipole lengths.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 µm,” Appl. Phys. Lett. 27, 275–279 (1975).
    [CrossRef]
  2. C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
    [CrossRef]
  3. N. Chong, H. Ahmed, “Antenna-coupled polycrystalline silicon air-bridge thermal detector for mid-infrared radiation,” Appl. Phys. Lett. 71, 1607–1609 (1997).
    [CrossRef]
  4. E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
    [CrossRef]
  5. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 1997).
  6. I. Codreanu, C. Fumeaux, D. F. Spencer, G. D. Boreman, “Microstrip antenna-coupled infrared detector,” Electron. Lett. 35, 2166–2167 (1999).
    [CrossRef]
  7. I. Codreanu, G. D. Boreman, “Infrared microstrip dipole antennas—FDTD predictions versus experiment,” Microwave Opt. Technol. Lett. 29, 381–383 (2001).
    [CrossRef]
  8. D. R. Lide, H. P. R. Frederiske, eds., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1996).
  9. E. L. Dereniak, G. D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996).
  10. H. R. Philipp, “Silicon dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1985), pp. 749–763.

2001 (1)

I. Codreanu, G. D. Boreman, “Infrared microstrip dipole antennas—FDTD predictions versus experiment,” Microwave Opt. Technol. Lett. 29, 381–383 (2001).
[CrossRef]

2000 (1)

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

1999 (1)

I. Codreanu, C. Fumeaux, D. F. Spencer, G. D. Boreman, “Microstrip antenna-coupled infrared detector,” Electron. Lett. 35, 2166–2167 (1999).
[CrossRef]

1997 (1)

N. Chong, H. Ahmed, “Antenna-coupled polycrystalline silicon air-bridge thermal detector for mid-infrared radiation,” Appl. Phys. Lett. 71, 1607–1609 (1997).
[CrossRef]

1991 (1)

E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

1975 (1)

S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 µm,” Appl. Phys. Lett. 27, 275–279 (1975).
[CrossRef]

Ahmed, H.

N. Chong, H. Ahmed, “Antenna-coupled polycrystalline silicon air-bridge thermal detector for mid-infrared radiation,” Appl. Phys. Lett. 71, 1607–1609 (1997).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 1997).

Boreman, G. D.

I. Codreanu, G. D. Boreman, “Infrared microstrip dipole antennas—FDTD predictions versus experiment,” Microwave Opt. Technol. Lett. 29, 381–383 (2001).
[CrossRef]

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

I. Codreanu, C. Fumeaux, D. F. Spencer, G. D. Boreman, “Microstrip antenna-coupled infrared detector,” Electron. Lett. 35, 2166–2167 (1999).
[CrossRef]

E. L. Dereniak, G. D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996).

Chong, N.

N. Chong, H. Ahmed, “Antenna-coupled polycrystalline silicon air-bridge thermal detector for mid-infrared radiation,” Appl. Phys. Lett. 71, 1607–1609 (1997).
[CrossRef]

Codreanu, I.

I. Codreanu, G. D. Boreman, “Infrared microstrip dipole antennas—FDTD predictions versus experiment,” Microwave Opt. Technol. Lett. 29, 381–383 (2001).
[CrossRef]

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

I. Codreanu, C. Fumeaux, D. F. Spencer, G. D. Boreman, “Microstrip antenna-coupled infrared detector,” Electron. Lett. 35, 2166–2167 (1999).
[CrossRef]

Dereniak, E. L.

E. L. Dereniak, G. D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996).

Fumeaux, C.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

I. Codreanu, C. Fumeaux, D. F. Spencer, G. D. Boreman, “Microstrip antenna-coupled infrared detector,” Electron. Lett. 35, 2166–2167 (1999).
[CrossRef]

Gonzalez, F. J.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

Gritz, M. A.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

Grossman, E. N.

E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

Gustafson, T. K.

S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 µm,” Appl. Phys. Lett. 27, 275–279 (1975).
[CrossRef]

Izawa, T.

S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 µm,” Appl. Phys. Lett. 27, 275–279 (1975).
[CrossRef]

McDonald, D. G.

E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

Philipp, H. R.

H. R. Philipp, “Silicon dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1985), pp. 749–763.

Sauvageau, J. E.

E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

Schaich, W. L.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

Spencer, D. F.

I. Codreanu, C. Fumeaux, D. F. Spencer, G. D. Boreman, “Microstrip antenna-coupled infrared detector,” Electron. Lett. 35, 2166–2167 (1999).
[CrossRef]

Wang, S. Y.

S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 µm,” Appl. Phys. Lett. 27, 275–279 (1975).
[CrossRef]

Appl. Phys. Lett. (3)

S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 µm,” Appl. Phys. Lett. 27, 275–279 (1975).
[CrossRef]

N. Chong, H. Ahmed, “Antenna-coupled polycrystalline silicon air-bridge thermal detector for mid-infrared radiation,” Appl. Phys. Lett. 71, 1607–1609 (1997).
[CrossRef]

E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

Electron. Lett. (1)

I. Codreanu, C. Fumeaux, D. F. Spencer, G. D. Boreman, “Microstrip antenna-coupled infrared detector,” Electron. Lett. 35, 2166–2167 (1999).
[CrossRef]

Infrared Phys. Technol. (1)

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

I. Codreanu, G. D. Boreman, “Infrared microstrip dipole antennas—FDTD predictions versus experiment,” Microwave Opt. Technol. Lett. 29, 381–383 (2001).
[CrossRef]

Other (4)

D. R. Lide, H. P. R. Frederiske, eds., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1996).

E. L. Dereniak, G. D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996).

H. R. Philipp, “Silicon dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1985), pp. 749–763.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Side view of a microstrip patch antenna. The patch length is slightly shorter than half the wavelength scaled to the index of refraction of the dielectric substrate. The induced antenna fields and currents are also shown.

Fig. 2
Fig. 2

Electron micrograph of a dipole-antenna-coupled microbolometer.

Fig. 3
Fig. 3

Normalized detector response versus antenna length for a microstrip dipole-antenna-coupled microbolometer.

Fig. 4
Fig. 4

Influence of the ground plane on the magnitude, position, and width of the antenna resonance.

Fig. 5
Fig. 5

Microstrip dipole antenna with sandwiched substrate: (a) electron micrograph, (b) side-view schematic. Nb, niobium; Au, gold; SiO2, silicon dioxide; Si, silicon.

Fig. 6
Fig. 6

Detector response versus antenna length. Devices with homogeneous dielectric substrate compared with devices incorporating an air layer within the substrate.

Fig. 7
Fig. 7

Normalized detector response versus the modulation frequency of the laser beam.

Fig. 8
Fig. 8

Bridge microstrip dipole-antenna-coupled microbolometer: (a) electron micrograph, (b) side-view schematic. Nb, niobium; Au, gold; SiO2, silicon dioxide; Si, silicon.

Fig. 9
Fig. 9

Detector response versus antenna length for a bridge microstrip dipole-antenna-coupled microbolometer.

Tables (1)

Tables Icon

Table 1 Characteristics of Devices with Different Oxide Thicknesses

Metrics