Abstract

Polarization-multiplexed phase-only diffractive optical elements with subwavelength structures are proposed and fabricated. The differences among the phase modulations result from the differences among the effective indices exhibited in the subwavelength structures with various filling factors and surface profiles, and the phase retardations are obtained by the relief depth of the structures. The polarization-selective property is achieved by the polarization dependence of the effective indices exhibited in the one-dimensional subwavelength structures and the polarization independence exhibited in the two-dimensional structures. Additionally, the polarization contrast of our polarization-multiplexed elements, defined as the cross talk between the two polarization incidences, is independent of the relief depth. The principle of the polarization multiplexing by use of the subwavelength structures is described, and the fabrication results for the polarization-multiplexed computer-generated holograms are demonstrated.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. A. Azzam, “Polarizing beam splitters for infrared and millimeter waves using single-layer coated dielectric slab or unbacked films,” Appl. Opt. 25, 4225–4227 (1986).
    [CrossRef] [PubMed]
  2. R. K. Kostuk, M. Kato, Y. Huang, “Polarization properties of substrate-mode holographic interconnects,” Appl. Opt. 29, 3848–3854 (1990).
    [CrossRef] [PubMed]
  3. S. Habraken, O. Michaux, Y. Renotte, Y. Lion, “Polarizing holographic beam splitter on a photoresist,” Opt. Lett. 20, 2348–2350 (1995).
    [CrossRef] [PubMed]
  4. N. Davidson, A. A. Friesem, E. Hasman, “Computer-generated relief gratings as space-variant polarization elements,” Opt. Lett. 17, 1541–1543 (1992).
    [CrossRef] [PubMed]
  5. F. Xu, J. E. Ford, Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt. 34, 256–266 (1995).
    [CrossRef] [PubMed]
  6. N. Nieuborg, A. Kirk, B. Morlion, H. Thienpont, I. Veretennicoff, “Polarization-selective diffractive optical elements with an index-matching gap material,” Appl. Opt. 36, 4681–4685 (1997).
    [CrossRef] [PubMed]
  7. F. Xu, R. Tyan, P. Sun, Y. Fainman, C. Cheng, A. Scherer, “Form-birefringent computer-generated holograms,” Opt. Lett. 21, 1513–1515 (1996).
    [CrossRef] [PubMed]
  8. U. D. Zeitner, B. Schnabel, E. B. Kley, F. Wyrowski, “Polarization multiplexing of diffractive elements with metal-stripe grating pixels,” Appl. Opt. 38, 2177–2181 (1999).
    [CrossRef]
  9. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  10. R. Bräuer, O. Bryngdahl, “Design of antireflection gratings with approximate and rigorous methods,” Appl. Opt. 33, 7875–7882 (1994).
    [CrossRef] [PubMed]
  11. F. T. Chen, H. G. Craighead, “Diffractive lens fabricated with mostly zeroth-order gratings,” Opt. Lett. 21, 177–179 (1996).
    [CrossRef] [PubMed]
  12. W. Yu, K. Takahara, T. Konishi, T. Yotsuya, Y. Ichioka, “Fabrication of multilevel phase computer-generated hologram elements based on effective medium theory,” Appl. Opt. 39, 3531–3536 (2000).
    [CrossRef]

2000 (1)

1999 (1)

1997 (1)

1996 (2)

1995 (2)

1994 (1)

1992 (1)

1990 (1)

1986 (1)

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Azzam, R. M. A.

Bräuer, R.

Bryngdahl, O.

Chen, F. T.

Cheng, C.

Craighead, H. G.

Davidson, N.

Fainman, Y.

Ford, J. E.

Friesem, A. A.

Habraken, S.

Hasman, E.

Huang, Y.

Ichioka, Y.

Kato, M.

Kirk, A.

Kley, E. B.

Konishi, T.

Kostuk, R. K.

Lion, Y.

Michaux, O.

Morlion, B.

Nieuborg, N.

Renotte, Y.

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Scherer, A.

Schnabel, B.

Sun, P.

Takahara, K.

Thienpont, H.

Tyan, R.

Veretennicoff, I.

Wyrowski, F.

Xu, F.

Yotsuya, T.

Yu, W.

Zeitner, U. D.

Appl. Opt. (7)

Opt. Lett. (4)

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) One-dimensional and (b) two-dimensional subwavelength periodic gratings in an isotropic dielectric substrate.

Fig. 2
Fig. 2

Effective indices exhibited in the 1-D and the 2-D SWPSs relieved on the fused silica (n = 1.46) with period T = 0.679λ as a function of the filling factors.

Fig. 3
Fig. 3

Synthesized surface profiles for obtaining the desired phase modulations according to the polarization. (a) ϕ2 for both incidences, (b) ϕ1 for both incidences, (c) ϕ2 for vertical and ϕ1 for horizontal incidence, (d) ϕ2 for horizontal and ϕ1 for vertical incidence.

Fig. 4
Fig. 4

Scanning-electron-microscope photograph of the multiplexed CGH after etching process.

Fig. 5
Fig. 5

Reconstructed image captured by a camera when the fabricated multiplexed CGH is illuminated with (a) horizontal, (b) vertical, and (c) 45° incident light, where the wavelength λ = 0.633 µm.

Tables (1)

Tables Icon

Table 1 Filling Factors and Effective Indices for Fabrication of Polarization Multiplexed DOE in the Fused-Silica Substrate

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

nTE2=n0TE2+π23Tλ2f21-f2n2-12,
nTM2=n0TM2+π23Tλ2f21-f2n0TM6n0TE21n2-12,
n0TE2=fn2+1-f,1n0TM2=fn2+1-f
n2D=n2D-TE+n2D-TM/2,
n2D-TM-2=1-f+f/nTE2,n2D-TE2=1-f+fnTM2.

Metrics