Abstract

For an improved understanding of the structural basis of cellular mechanisms, it is highly desirable to develop methods for a detailed topological analysis of biological nanostructures and their dynamics in the interior of three-dimensionally conserved cells. We present a method of far-field laser fluorescence microscopy to measure relative axial positions of pointlike fluorescent targets and the distance between each target in the range of a few nanometers. The physical principle behind this approach can be extended to the determination of three-dimensional (3D) positions and 3D distances between any number of objects that can be discriminated owing to their spectral signature, thus allowing topological measurements so far regarded to be beyond the capabilities of light microscopy.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Cremer, C. Cremer, “Chromosome territories and the functional nuclear architecture,” Nat. Rev. 2, 292–301 (2001).
    [CrossRef]
  2. H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, “High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy,” J. Microsc. 189, 118–136 (1998).
    [CrossRef]
  3. A. Esa, P. Edelmann, G. Kreth, L. Trakhtenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
    [CrossRef] [PubMed]
  4. A. M. Van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
    [CrossRef]
  5. T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000).
    [CrossRef] [PubMed]
  6. P. Edelmann, A. Esa, M. Hausmann, C. Cremer, “Confocal laser-scanning microscopy: in situ determination of the confocal point-spread function and the chromatic shifts in intact cell nuclei,” Optik 110, 194–198 (1999).
  7. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
    [CrossRef] [PubMed]
  8. M. R. Speicher, S. G. Ballard, D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12, 368–375 (1996).
    [CrossRef] [PubMed]
  9. J. R. Lakowicz, H. Szmaczinski, K. Nowaczyk, “Fluorescence lifetime imaging,” Proc. Natl. Acad. Sci. USA 89, 1271–1275 (1992).
    [CrossRef]
  10. A. Schoenle, M. Glatz, S. W. Hell, “Four-dimensional multiphoton microscopy with time-correlated single-photon counting,” Appl. Opt. 39, 6306–6311 (2000).
    [CrossRef]
  11. D. M. J. Lilley, T. J. Wilson, “Fluorescence resonance energy transfer as a structural tool for nucleic acids,” Curr. Opin. Chem. Biol. 4, 507–517 (2000).
    [CrossRef] [PubMed]
  12. P. Edelmann, C. Cremer, “Improvement of confocal spectral precision distance microscopy (SPDM),” Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 313–320 (2000).
    [CrossRef]
  13. H. Bornfleth, P. Edelmann, D. Zink, T. Cremer, C. Cremer, “Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy,” Biophys. J. 77, 2871–2886 (1999).
    [CrossRef] [PubMed]
  14. C. Cremer, T. Cremer, “Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microsc. Acta 81, 31–44 (1978).
    [PubMed]
  15. S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994).
    [CrossRef]
  16. P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
    [CrossRef]
  17. M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimen,” Biophys. J. 75, 1659–1668 (1998).
    [CrossRef] [PubMed]
  18. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [CrossRef] [PubMed]
  19. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
    [CrossRef] [PubMed]
  20. M. Schmidt, M. Nagorny, S. W. Hell, “Subresolution axial measurements in far-field fluorescence microscopy with precision of 1 nanometer,” Rev. Sci. Instrum. 71, 2742–2745 (2000).
    [CrossRef]
  21. B. Schneider, I. Upmann, I. Kirsten, J. Bradl, M. Hausmann, C. Cremer, “A dual-laser, spatially modulated illumination fluorescence microscope,” Microsc. Anal. 57, 5–7 (1999).
  22. B. Schneider, B. Albrecht, P. Jaeckle, D. Neofotistos, S. Söding, T. Jäger, C. Cremer, “Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams,” in Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 321–330 (2000).
    [CrossRef]
  23. B. Bailey, D. Farkas, D. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
    [CrossRef] [PubMed]
  24. M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective-lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds., Proc. SPIE2412, 147–156 (1995).
    [CrossRef]
  25. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (University of Cambridge, Cambridge, UK, 1992).
  26. Khoral Research Inc., 6200 Uptown Blvd. N.E., Suite 200, Albuquerque, N. Mex. 87110-4142, http://www.khoral.com .
  27. B. Albrecht, A. V. Failla, R. Heintzmann, C. Cremer, “Spatially modulated illumination microscopy: online visualization of intensity distribution and prediction of nanometer precision of axial distance measurements by computer simulations,” J. Biomed. Opt. (to be published).
  28. R. Heintzmann, G. Kreth, C. Cremer, “Reconstruction of axial tomographic high resolution data from confocal fluorescence microscopy: a method for improving 3D FISH images,” Anal. Cell. Path. 20, 7–15 (2000).
  29. M. Hausmann, C. Cremer, J. Bradl, B. Schneider, “Wellenfeldmikroskop, Wellenfeldmikroskopieverfahren, auch zur DNA-Sequenzierung, und Kalibrierverfahren für die Wellenfeldmikroskopie” (Wavefield microscopy, wavefield microscopy procedures, also for DNA sequencing), German patent application DE 19830569A1 (7July1998).
  30. C. Cremer, P. Edelmann, H. Bornfleth, G. Kreth, H. Muench, H. Luz, M. Hausmann, “Principles of spectral precision distance confocal microscopy of molecular nuclear structure,” in Handbook of Computer Vision and Applications, B. Jähne, H. Haussecker, P. Geissler, eds. (Academic, San Diego, Calif., 1999), Vol. 3.
  31. G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, T. M. Jovin, “Time-resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
    [CrossRef] [PubMed]
  32. T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
    [CrossRef] [PubMed]
  33. A. I. Lamond, W. C. Earnshaw, “Structure and function in the nucleus,” Science 280, 547–553 (1998).
    [CrossRef] [PubMed]
  34. T. Cremer, G. Kreth, H. Koester, R. H. A. Fink, R. Heintzmann, I. Solovei, D. Zink, C. Cremer, “Chromosome territories, interchromatin domain compartment and nuclear matrix: an integrated view of the functional nuclear architecture,” Crit. Rev. Eukaryotic Gene Expression 12, 179–212 (2000).
  35. B. Albrecht, A. V. Failla, A. Schweitzer, C. Cremer, “Spatially modulated illumination microscopy,” G. I. T. Imag. Microsc. 2, 40–42 (2001).
  36. A. V. Failla, A. Cavallo, C. Cremer are preparing a manuscript to be called “Subwavelength size determination with SMI virtual microscopy.”

2001 (2)

T. Cremer, C. Cremer, “Chromosome territories and the functional nuclear architecture,” Nat. Rev. 2, 292–301 (2001).
[CrossRef]

B. Albrecht, A. V. Failla, A. Schweitzer, C. Cremer, “Spatially modulated illumination microscopy,” G. I. T. Imag. Microsc. 2, 40–42 (2001).

2000 (8)

T. Cremer, G. Kreth, H. Koester, R. H. A. Fink, R. Heintzmann, I. Solovei, D. Zink, C. Cremer, “Chromosome territories, interchromatin domain compartment and nuclear matrix: an integrated view of the functional nuclear architecture,” Crit. Rev. Eukaryotic Gene Expression 12, 179–212 (2000).

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[CrossRef] [PubMed]

M. Schmidt, M. Nagorny, S. W. Hell, “Subresolution axial measurements in far-field fluorescence microscopy with precision of 1 nanometer,” Rev. Sci. Instrum. 71, 2742–2745 (2000).
[CrossRef]

R. Heintzmann, G. Kreth, C. Cremer, “Reconstruction of axial tomographic high resolution data from confocal fluorescence microscopy: a method for improving 3D FISH images,” Anal. Cell. Path. 20, 7–15 (2000).

A. Esa, P. Edelmann, G. Kreth, L. Trakhtenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000).
[CrossRef] [PubMed]

A. Schoenle, M. Glatz, S. W. Hell, “Four-dimensional multiphoton microscopy with time-correlated single-photon counting,” Appl. Opt. 39, 6306–6311 (2000).
[CrossRef]

D. M. J. Lilley, T. J. Wilson, “Fluorescence resonance energy transfer as a structural tool for nucleic acids,” Curr. Opin. Chem. Biol. 4, 507–517 (2000).
[CrossRef] [PubMed]

1999 (3)

H. Bornfleth, P. Edelmann, D. Zink, T. Cremer, C. Cremer, “Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy,” Biophys. J. 77, 2871–2886 (1999).
[CrossRef] [PubMed]

P. Edelmann, A. Esa, M. Hausmann, C. Cremer, “Confocal laser-scanning microscopy: in situ determination of the confocal point-spread function and the chromatic shifts in intact cell nuclei,” Optik 110, 194–198 (1999).

B. Schneider, I. Upmann, I. Kirsten, J. Bradl, M. Hausmann, C. Cremer, “A dual-laser, spatially modulated illumination fluorescence microscope,” Microsc. Anal. 57, 5–7 (1999).

1998 (4)

A. I. Lamond, W. C. Earnshaw, “Structure and function in the nucleus,” Science 280, 547–553 (1998).
[CrossRef] [PubMed]

A. M. Van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
[CrossRef]

H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, “High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy,” J. Microsc. 189, 118–136 (1998).
[CrossRef]

M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimen,” Biophys. J. 75, 1659–1668 (1998).
[CrossRef] [PubMed]

1996 (2)

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef] [PubMed]

M. R. Speicher, S. G. Ballard, D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12, 368–375 (1996).
[CrossRef] [PubMed]

1995 (1)

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

1994 (2)

S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994).
[CrossRef]

S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[CrossRef] [PubMed]

1993 (2)

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

B. Bailey, D. Farkas, D. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

1992 (1)

J. R. Lakowicz, H. Szmaczinski, K. Nowaczyk, “Fluorescence lifetime imaging,” Proc. Natl. Acad. Sci. USA 89, 1271–1275 (1992).
[CrossRef]

1991 (1)

G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, T. M. Jovin, “Time-resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
[CrossRef] [PubMed]

1978 (1)

C. Cremer, T. Cremer, “Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microsc. Acta 81, 31–44 (1978).
[PubMed]

Agard, D. A.

M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective-lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds., Proc. SPIE2412, 147–156 (1995).
[CrossRef]

Albrecht, B.

B. Albrecht, A. V. Failla, A. Schweitzer, C. Cremer, “Spatially modulated illumination microscopy,” G. I. T. Imag. Microsc. 2, 40–42 (2001).

B. Schneider, B. Albrecht, P. Jaeckle, D. Neofotistos, S. Söding, T. Jäger, C. Cremer, “Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams,” in Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 321–330 (2000).
[CrossRef]

B. Albrecht, A. V. Failla, R. Heintzmann, C. Cremer, “Spatially modulated illumination microscopy: online visualization of intensity distribution and prediction of nanometer precision of axial distance measurements by computer simulations,” J. Biomed. Opt. (to be published).

Alivisatos, A. P.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000).
[CrossRef] [PubMed]

Amariglio, N.

A. Esa, P. Edelmann, G. Kreth, L. Trakhtenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

Arndt-Jovin, D. J.

G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, T. M. Jovin, “Time-resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
[CrossRef] [PubMed]

Bahlmann, K.

M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimen,” Biophys. J. 75, 1659–1668 (1998).
[CrossRef] [PubMed]

Bailey, B.

B. Bailey, D. Farkas, D. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Ballard, S. G.

M. R. Speicher, S. G. Ballard, D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12, 368–375 (1996).
[CrossRef] [PubMed]

Bar-Am, I.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef] [PubMed]

Bornfleth, H.

H. Bornfleth, P. Edelmann, D. Zink, T. Cremer, C. Cremer, “Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy,” Biophys. J. 77, 2871–2886 (1999).
[CrossRef] [PubMed]

H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, “High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy,” J. Microsc. 189, 118–136 (1998).
[CrossRef]

C. Cremer, P. Edelmann, H. Bornfleth, G. Kreth, H. Muench, H. Luz, M. Hausmann, “Principles of spectral precision distance confocal microscopy of molecular nuclear structure,” in Handbook of Computer Vision and Applications, B. Jähne, H. Haussecker, P. Geissler, eds. (Academic, San Diego, Calif., 1999), Vol. 3.

Bradl, J.

B. Schneider, I. Upmann, I. Kirsten, J. Bradl, M. Hausmann, C. Cremer, “A dual-laser, spatially modulated illumination fluorescence microscope,” Microsc. Anal. 57, 5–7 (1999).

M. Hausmann, C. Cremer, J. Bradl, B. Schneider, “Wellenfeldmikroskop, Wellenfeldmikroskopieverfahren, auch zur DNA-Sequenzierung, und Kalibrierverfahren für die Wellenfeldmikroskopie” (Wavefield microscopy, wavefield microscopy procedures, also for DNA sequencing), German patent application DE 19830569A1 (7July1998).

Brakenhoff, G. J.

A. M. Van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
[CrossRef]

Cavallo, A.

A. V. Failla, A. Cavallo, C. Cremer are preparing a manuscript to be called “Subwavelength size determination with SMI virtual microscopy.”

Chemla, D. S.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000).
[CrossRef] [PubMed]

Clegg, R. M.

G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, T. M. Jovin, “Time-resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
[CrossRef] [PubMed]

Cremer, C.

T. Cremer, C. Cremer, “Chromosome territories and the functional nuclear architecture,” Nat. Rev. 2, 292–301 (2001).
[CrossRef]

B. Albrecht, A. V. Failla, A. Schweitzer, C. Cremer, “Spatially modulated illumination microscopy,” G. I. T. Imag. Microsc. 2, 40–42 (2001).

T. Cremer, G. Kreth, H. Koester, R. H. A. Fink, R. Heintzmann, I. Solovei, D. Zink, C. Cremer, “Chromosome territories, interchromatin domain compartment and nuclear matrix: an integrated view of the functional nuclear architecture,” Crit. Rev. Eukaryotic Gene Expression 12, 179–212 (2000).

A. Esa, P. Edelmann, G. Kreth, L. Trakhtenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

R. Heintzmann, G. Kreth, C. Cremer, “Reconstruction of axial tomographic high resolution data from confocal fluorescence microscopy: a method for improving 3D FISH images,” Anal. Cell. Path. 20, 7–15 (2000).

B. Schneider, I. Upmann, I. Kirsten, J. Bradl, M. Hausmann, C. Cremer, “A dual-laser, spatially modulated illumination fluorescence microscope,” Microsc. Anal. 57, 5–7 (1999).

P. Edelmann, A. Esa, M. Hausmann, C. Cremer, “Confocal laser-scanning microscopy: in situ determination of the confocal point-spread function and the chromatic shifts in intact cell nuclei,” Optik 110, 194–198 (1999).

H. Bornfleth, P. Edelmann, D. Zink, T. Cremer, C. Cremer, “Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy,” Biophys. J. 77, 2871–2886 (1999).
[CrossRef] [PubMed]

H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, “High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy,” J. Microsc. 189, 118–136 (1998).
[CrossRef]

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994).
[CrossRef]

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

C. Cremer, T. Cremer, “Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microsc. Acta 81, 31–44 (1978).
[PubMed]

P. Edelmann, C. Cremer, “Improvement of confocal spectral precision distance microscopy (SPDM),” Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 313–320 (2000).
[CrossRef]

B. Schneider, B. Albrecht, P. Jaeckle, D. Neofotistos, S. Söding, T. Jäger, C. Cremer, “Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams,” in Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 321–330 (2000).
[CrossRef]

B. Albrecht, A. V. Failla, R. Heintzmann, C. Cremer, “Spatially modulated illumination microscopy: online visualization of intensity distribution and prediction of nanometer precision of axial distance measurements by computer simulations,” J. Biomed. Opt. (to be published).

M. Hausmann, C. Cremer, J. Bradl, B. Schneider, “Wellenfeldmikroskop, Wellenfeldmikroskopieverfahren, auch zur DNA-Sequenzierung, und Kalibrierverfahren für die Wellenfeldmikroskopie” (Wavefield microscopy, wavefield microscopy procedures, also for DNA sequencing), German patent application DE 19830569A1 (7July1998).

C. Cremer, P. Edelmann, H. Bornfleth, G. Kreth, H. Muench, H. Luz, M. Hausmann, “Principles of spectral precision distance confocal microscopy of molecular nuclear structure,” in Handbook of Computer Vision and Applications, B. Jähne, H. Haussecker, P. Geissler, eds. (Academic, San Diego, Calif., 1999), Vol. 3.

A. V. Failla, A. Cavallo, C. Cremer are preparing a manuscript to be called “Subwavelength size determination with SMI virtual microscopy.”

Cremer, T.

T. Cremer, C. Cremer, “Chromosome territories and the functional nuclear architecture,” Nat. Rev. 2, 292–301 (2001).
[CrossRef]

T. Cremer, G. Kreth, H. Koester, R. H. A. Fink, R. Heintzmann, I. Solovei, D. Zink, C. Cremer, “Chromosome territories, interchromatin domain compartment and nuclear matrix: an integrated view of the functional nuclear architecture,” Crit. Rev. Eukaryotic Gene Expression 12, 179–212 (2000).

H. Bornfleth, P. Edelmann, D. Zink, T. Cremer, C. Cremer, “Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy,” Biophys. J. 77, 2871–2886 (1999).
[CrossRef] [PubMed]

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

C. Cremer, T. Cremer, “Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microsc. Acta 81, 31–44 (1978).
[PubMed]

Dietzel, S.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

du Manoir, S.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef] [PubMed]

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[CrossRef] [PubMed]

Earnshaw, W. C.

A. I. Lamond, W. C. Earnshaw, “Structure and function in the nucleus,” Science 280, 547–553 (1998).
[CrossRef] [PubMed]

Edelmann, P.

A. Esa, P. Edelmann, G. Kreth, L. Trakhtenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

P. Edelmann, A. Esa, M. Hausmann, C. Cremer, “Confocal laser-scanning microscopy: in situ determination of the confocal point-spread function and the chromatic shifts in intact cell nuclei,” Optik 110, 194–198 (1999).

H. Bornfleth, P. Edelmann, D. Zink, T. Cremer, C. Cremer, “Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy,” Biophys. J. 77, 2871–2886 (1999).
[CrossRef] [PubMed]

P. Edelmann, C. Cremer, “Improvement of confocal spectral precision distance microscopy (SPDM),” Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 313–320 (2000).
[CrossRef]

C. Cremer, P. Edelmann, H. Bornfleth, G. Kreth, H. Muench, H. Luz, M. Hausmann, “Principles of spectral precision distance confocal microscopy of molecular nuclear structure,” in Handbook of Computer Vision and Applications, B. Jähne, H. Haussecker, P. Geissler, eds. (Academic, San Diego, Calif., 1999), Vol. 3.

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[CrossRef] [PubMed]

Eils, R.

H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, “High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy,” J. Microsc. 189, 118–136 (1998).
[CrossRef]

Emmerich, P.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Esa, A.

A. Esa, P. Edelmann, G. Kreth, L. Trakhtenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

P. Edelmann, A. Esa, M. Hausmann, C. Cremer, “Confocal laser-scanning microscopy: in situ determination of the confocal point-spread function and the chromatic shifts in intact cell nuclei,” Optik 110, 194–198 (1999).

Failla, A. V.

B. Albrecht, A. V. Failla, A. Schweitzer, C. Cremer, “Spatially modulated illumination microscopy,” G. I. T. Imag. Microsc. 2, 40–42 (2001).

A. V. Failla, A. Cavallo, C. Cremer are preparing a manuscript to be called “Subwavelength size determination with SMI virtual microscopy.”

B. Albrecht, A. V. Failla, R. Heintzmann, C. Cremer, “Spatially modulated illumination microscopy: online visualization of intensity distribution and prediction of nanometer precision of axial distance measurements by computer simulations,” J. Biomed. Opt. (to be published).

Farkas, D.

B. Bailey, D. Farkas, D. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Ferguson-Smith, M. A.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef] [PubMed]

Fink, R. H. A.

T. Cremer, G. Kreth, H. Koester, R. H. A. Fink, R. Heintzmann, I. Solovei, D. Zink, C. Cremer, “Chromosome territories, interchromatin domain compartment and nuclear matrix: an integrated view of the functional nuclear architecture,” Crit. Rev. Eukaryotic Gene Expression 12, 179–212 (2000).

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (University of Cambridge, Cambridge, UK, 1992).

Garini, Y.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef] [PubMed]

Giese, G.

M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimen,” Biophys. J. 75, 1659–1668 (1998).
[CrossRef] [PubMed]

Glatz, M.

Gustafsson, M. G. L.

M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective-lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds., Proc. SPIE2412, 147–156 (1995).
[CrossRef]

Hänninen, P. E.

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

Hausmann, M.

A. Esa, P. Edelmann, G. Kreth, L. Trakhtenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

P. Edelmann, A. Esa, M. Hausmann, C. Cremer, “Confocal laser-scanning microscopy: in situ determination of the confocal point-spread function and the chromatic shifts in intact cell nuclei,” Optik 110, 194–198 (1999).

B. Schneider, I. Upmann, I. Kirsten, J. Bradl, M. Hausmann, C. Cremer, “A dual-laser, spatially modulated illumination fluorescence microscope,” Microsc. Anal. 57, 5–7 (1999).

M. Hausmann, C. Cremer, J. Bradl, B. Schneider, “Wellenfeldmikroskop, Wellenfeldmikroskopieverfahren, auch zur DNA-Sequenzierung, und Kalibrierverfahren für die Wellenfeldmikroskopie” (Wavefield microscopy, wavefield microscopy procedures, also for DNA sequencing), German patent application DE 19830569A1 (7July1998).

C. Cremer, P. Edelmann, H. Bornfleth, G. Kreth, H. Muench, H. Luz, M. Hausmann, “Principles of spectral precision distance confocal microscopy of molecular nuclear structure,” in Handbook of Computer Vision and Applications, B. Jähne, H. Haussecker, P. Geissler, eds. (Academic, San Diego, Calif., 1999), Vol. 3.

Heintzmann, R.

R. Heintzmann, G. Kreth, C. Cremer, “Reconstruction of axial tomographic high resolution data from confocal fluorescence microscopy: a method for improving 3D FISH images,” Anal. Cell. Path. 20, 7–15 (2000).

T. Cremer, G. Kreth, H. Koester, R. H. A. Fink, R. Heintzmann, I. Solovei, D. Zink, C. Cremer, “Chromosome territories, interchromatin domain compartment and nuclear matrix: an integrated view of the functional nuclear architecture,” Crit. Rev. Eukaryotic Gene Expression 12, 179–212 (2000).

B. Albrecht, A. V. Failla, R. Heintzmann, C. Cremer, “Spatially modulated illumination microscopy: online visualization of intensity distribution and prediction of nanometer precision of axial distance measurements by computer simulations,” J. Biomed. Opt. (to be published).

Hell, S. W.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[CrossRef] [PubMed]

M. Schmidt, M. Nagorny, S. W. Hell, “Subresolution axial measurements in far-field fluorescence microscopy with precision of 1 nanometer,” Rev. Sci. Instrum. 71, 2742–2745 (2000).
[CrossRef]

A. Schoenle, M. Glatz, S. W. Hell, “Four-dimensional multiphoton microscopy with time-correlated single-photon counting,” Appl. Opt. 39, 6306–6311 (2000).
[CrossRef]

M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimen,” Biophys. J. 75, 1659–1668 (1998).
[CrossRef] [PubMed]

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994).
[CrossRef]

S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[CrossRef] [PubMed]

Jaeckle, P.

B. Schneider, B. Albrecht, P. Jaeckle, D. Neofotistos, S. Söding, T. Jäger, C. Cremer, “Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams,” in Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 321–330 (2000).
[CrossRef]

Jäger, T.

B. Schneider, B. Albrecht, P. Jaeckle, D. Neofotistos, S. Söding, T. Jäger, C. Cremer, “Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams,” in Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 321–330 (2000).
[CrossRef]

Jakobs, S.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[CrossRef] [PubMed]

Jauch, A.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Jovin, T. M.

G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, T. M. Jovin, “Time-resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
[CrossRef] [PubMed]

Kirsten, I.

B. Schneider, I. Upmann, I. Kirsten, J. Bradl, M. Hausmann, C. Cremer, “A dual-laser, spatially modulated illumination fluorescence microscope,” Microsc. Anal. 57, 5–7 (1999).

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[CrossRef] [PubMed]

Koester, H.

T. Cremer, G. Kreth, H. Koester, R. H. A. Fink, R. Heintzmann, I. Solovei, D. Zink, C. Cremer, “Chromosome territories, interchromatin domain compartment and nuclear matrix: an integrated view of the functional nuclear architecture,” Crit. Rev. Eukaryotic Gene Expression 12, 179–212 (2000).

Köhler, J.

A. M. Van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
[CrossRef]

Kreth, G.

A. Esa, P. Edelmann, G. Kreth, L. Trakhtenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

R. Heintzmann, G. Kreth, C. Cremer, “Reconstruction of axial tomographic high resolution data from confocal fluorescence microscopy: a method for improving 3D FISH images,” Anal. Cell. Path. 20, 7–15 (2000).

T. Cremer, G. Kreth, H. Koester, R. H. A. Fink, R. Heintzmann, I. Solovei, D. Zink, C. Cremer, “Chromosome territories, interchromatin domain compartment and nuclear matrix: an integrated view of the functional nuclear architecture,” Crit. Rev. Eukaryotic Gene Expression 12, 179–212 (2000).

C. Cremer, P. Edelmann, H. Bornfleth, G. Kreth, H. Muench, H. Luz, M. Hausmann, “Principles of spectral precision distance confocal microscopy of molecular nuclear structure,” in Handbook of Computer Vision and Applications, B. Jähne, H. Haussecker, P. Geissler, eds. (Academic, San Diego, Calif., 1999), Vol. 3.

Kurz, A.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Lacoste, T. D.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, H. Szmaczinski, K. Nowaczyk, “Fluorescence lifetime imaging,” Proc. Natl. Acad. Sci. USA 89, 1271–1275 (1992).
[CrossRef]

Lamond, A. I.

A. I. Lamond, W. C. Earnshaw, “Structure and function in the nucleus,” Science 280, 547–553 (1998).
[CrossRef] [PubMed]

Lanni, F.

B. Bailey, D. Farkas, D. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Ledbetter, D. H.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef] [PubMed]

Lichter, P.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Lilley, D. M. J.

D. M. J. Lilley, T. J. Wilson, “Fluorescence resonance energy transfer as a structural tool for nucleic acids,” Curr. Opin. Chem. Biol. 4, 507–517 (2000).
[CrossRef] [PubMed]

Lindek, S.

S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994).
[CrossRef]

Luz, H.

C. Cremer, P. Edelmann, H. Bornfleth, G. Kreth, H. Muench, H. Luz, M. Hausmann, “Principles of spectral precision distance confocal microscopy of molecular nuclear structure,” in Handbook of Computer Vision and Applications, B. Jähne, H. Haussecker, P. Geissler, eds. (Academic, San Diego, Calif., 1999), Vol. 3.

Marriott, G.

G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, T. M. Jovin, “Time-resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
[CrossRef] [PubMed]

Mathieu, U.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Michalet, X.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000).
[CrossRef] [PubMed]

Muench, H.

C. Cremer, P. Edelmann, H. Bornfleth, G. Kreth, H. Muench, H. Luz, M. Hausmann, “Principles of spectral precision distance confocal microscopy of molecular nuclear structure,” in Handbook of Computer Vision and Applications, B. Jähne, H. Haussecker, P. Geissler, eds. (Academic, San Diego, Calif., 1999), Vol. 3.

Müller, M.

A. M. Van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
[CrossRef]

Nagorny, M.

M. Schmidt, M. Nagorny, S. W. Hell, “Subresolution axial measurements in far-field fluorescence microscopy with precision of 1 nanometer,” Rev. Sci. Instrum. 71, 2742–2745 (2000).
[CrossRef]

Neofotistos, D.

B. Schneider, B. Albrecht, P. Jaeckle, D. Neofotistos, S. Söding, T. Jäger, C. Cremer, “Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams,” in Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 321–330 (2000).
[CrossRef]

Ning, Y.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef] [PubMed]

Nowaczyk, K.

J. R. Lakowicz, H. Szmaczinski, K. Nowaczyk, “Fluorescence lifetime imaging,” Proc. Natl. Acad. Sci. USA 89, 1271–1275 (1992).
[CrossRef]

Pinaud, F.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000).
[CrossRef] [PubMed]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (University of Cambridge, Cambridge, UK, 1992).

Rechavi, G.

A. Esa, P. Edelmann, G. Kreth, L. Trakhtenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

Reid, T.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef] [PubMed]

Ried, T.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Rinke, B.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Salo, J.

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

Sätzler, K.

H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, “High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy,” J. Microsc. 189, 118–136 (1998).
[CrossRef]

Scherthan, H.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Schmidt, J.

A. M. Van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
[CrossRef]

Schmidt, M.

M. Schmidt, M. Nagorny, S. W. Hell, “Subresolution axial measurements in far-field fluorescence microscopy with precision of 1 nanometer,” Rev. Sci. Instrum. 71, 2742–2745 (2000).
[CrossRef]

Schneider, B.

B. Schneider, I. Upmann, I. Kirsten, J. Bradl, M. Hausmann, C. Cremer, “A dual-laser, spatially modulated illumination fluorescence microscope,” Microsc. Anal. 57, 5–7 (1999).

B. Schneider, B. Albrecht, P. Jaeckle, D. Neofotistos, S. Söding, T. Jäger, C. Cremer, “Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams,” in Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 321–330 (2000).
[CrossRef]

M. Hausmann, C. Cremer, J. Bradl, B. Schneider, “Wellenfeldmikroskop, Wellenfeldmikroskopieverfahren, auch zur DNA-Sequenzierung, und Kalibrierverfahren für die Wellenfeldmikroskopie” (Wavefield microscopy, wavefield microscopy procedures, also for DNA sequencing), German patent application DE 19830569A1 (7July1998).

Schoell, B.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef] [PubMed]

Schoenle, A.

Schrader, M.

M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimen,” Biophys. J. 75, 1659–1668 (1998).
[CrossRef] [PubMed]

Schröck, E.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef] [PubMed]

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Schweitzer, A.

B. Albrecht, A. V. Failla, A. Schweitzer, C. Cremer, “Spatially modulated illumination microscopy,” G. I. T. Imag. Microsc. 2, 40–42 (2001).

Sedat, J. W.

M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective-lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds., Proc. SPIE2412, 147–156 (1995).
[CrossRef]

Söding, S.

B. Schneider, B. Albrecht, P. Jaeckle, D. Neofotistos, S. Söding, T. Jäger, C. Cremer, “Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams,” in Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 321–330 (2000).
[CrossRef]

Soenksen, D.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef] [PubMed]

Soini, E.

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

Solovei, I.

T. Cremer, G. Kreth, H. Koester, R. H. A. Fink, R. Heintzmann, I. Solovei, D. Zink, C. Cremer, “Chromosome territories, interchromatin domain compartment and nuclear matrix: an integrated view of the functional nuclear architecture,” Crit. Rev. Eukaryotic Gene Expression 12, 179–212 (2000).

Speicher, M. R.

M. R. Speicher, S. G. Ballard, D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12, 368–375 (1996).
[CrossRef] [PubMed]

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Stelzer, E. H. K.

S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994).
[CrossRef]

Szmaczinski, H.

J. R. Lakowicz, H. Szmaczinski, K. Nowaczyk, “Fluorescence lifetime imaging,” Proc. Natl. Acad. Sci. USA 89, 1271–1275 (1992).
[CrossRef]

Taylor, D.

B. Bailey, D. Farkas, D. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (University of Cambridge, Cambridge, UK, 1992).

Trakhtenbrot, L.

A. Esa, P. Edelmann, G. Kreth, L. Trakhtenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

Upmann, I.

B. Schneider, I. Upmann, I. Kirsten, J. Bradl, M. Hausmann, C. Cremer, “A dual-laser, spatially modulated illumination fluorescence microscope,” Microsc. Anal. 57, 5–7 (1999).

Van Oijen, A. M.

A. M. Van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
[CrossRef]

Veldman, T.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef] [PubMed]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (University of Cambridge, Cambridge, UK, 1992).

Ward, D. C.

M. R. Speicher, S. G. Ballard, D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12, 368–375 (1996).
[CrossRef] [PubMed]

Weiss, S.

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000).
[CrossRef] [PubMed]

Wichmann, J.

Wienberg, J.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef] [PubMed]

Wilson, T. J.

D. M. J. Lilley, T. J. Wilson, “Fluorescence resonance energy transfer as a structural tool for nucleic acids,” Curr. Opin. Chem. Biol. 4, 507–517 (2000).
[CrossRef] [PubMed]

Zink, D.

T. Cremer, G. Kreth, H. Koester, R. H. A. Fink, R. Heintzmann, I. Solovei, D. Zink, C. Cremer, “Chromosome territories, interchromatin domain compartment and nuclear matrix: an integrated view of the functional nuclear architecture,” Crit. Rev. Eukaryotic Gene Expression 12, 179–212 (2000).

H. Bornfleth, P. Edelmann, D. Zink, T. Cremer, C. Cremer, “Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy,” Biophys. J. 77, 2871–2886 (1999).
[CrossRef] [PubMed]

Zirbel, R.

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Anal. Cell. Path. (1)

R. Heintzmann, G. Kreth, C. Cremer, “Reconstruction of axial tomographic high resolution data from confocal fluorescence microscopy: a method for improving 3D FISH images,” Anal. Cell. Path. 20, 7–15 (2000).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. W. Hell, S. Lindek, C. Cremer, E. H. K. Stelzer, “Measurement of 4pi-confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett. 64, 1335–1337 (1994).
[CrossRef]

P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

Biophys. J. (3)

M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimen,” Biophys. J. 75, 1659–1668 (1998).
[CrossRef] [PubMed]

H. Bornfleth, P. Edelmann, D. Zink, T. Cremer, C. Cremer, “Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy,” Biophys. J. 77, 2871–2886 (1999).
[CrossRef] [PubMed]

G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, T. M. Jovin, “Time-resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

A. M. Van Oijen, J. Köhler, J. Schmidt, M. Müller, G. J. Brakenhoff, “3-dimensional super-resolution by spectrally selective imaging,” Chem. Phys. Lett. 292, 183–187 (1998).
[CrossRef]

Cold Spring Harb. Symp. Quant. Biol. (1)

T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, P. Lichter, “Role of chromosome territories in the functional compartmentalization of the cell nucleus,” Cold Spring Harb. Symp. Quant. Biol. 58, 777–792 (1993).
[CrossRef] [PubMed]

Crit. Rev. Eukaryotic Gene Expression (1)

T. Cremer, G. Kreth, H. Koester, R. H. A. Fink, R. Heintzmann, I. Solovei, D. Zink, C. Cremer, “Chromosome territories, interchromatin domain compartment and nuclear matrix: an integrated view of the functional nuclear architecture,” Crit. Rev. Eukaryotic Gene Expression 12, 179–212 (2000).

Curr. Opin. Chem. Biol. (1)

D. M. J. Lilley, T. J. Wilson, “Fluorescence resonance energy transfer as a structural tool for nucleic acids,” Curr. Opin. Chem. Biol. 4, 507–517 (2000).
[CrossRef] [PubMed]

G. I. T. Imag. Microsc. (1)

B. Albrecht, A. V. Failla, A. Schweitzer, C. Cremer, “Spatially modulated illumination microscopy,” G. I. T. Imag. Microsc. 2, 40–42 (2001).

J. Microsc. (2)

H. Bornfleth, K. Sätzler, R. Eils, C. Cremer, “High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy,” J. Microsc. 189, 118–136 (1998).
[CrossRef]

A. Esa, P. Edelmann, G. Kreth, L. Trakhtenbrot, N. Amariglio, G. Rechavi, M. Hausmann, C. Cremer, “Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome,” J. Microsc. 199, 96–105 (2000).
[CrossRef] [PubMed]

Microsc. Acta (1)

C. Cremer, T. Cremer, “Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microsc. Acta 81, 31–44 (1978).
[PubMed]

Microsc. Anal. (1)

B. Schneider, I. Upmann, I. Kirsten, J. Bradl, M. Hausmann, C. Cremer, “A dual-laser, spatially modulated illumination fluorescence microscope,” Microsc. Anal. 57, 5–7 (1999).

Nat. Genet. (1)

M. R. Speicher, S. G. Ballard, D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12, 368–375 (1996).
[CrossRef] [PubMed]

Nat. Rev. (1)

T. Cremer, C. Cremer, “Chromosome territories and the functional nuclear architecture,” Nat. Rev. 2, 292–301 (2001).
[CrossRef]

Nature (1)

B. Bailey, D. Farkas, D. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993).
[CrossRef] [PubMed]

Opt. Lett. (1)

Optik (1)

P. Edelmann, A. Esa, M. Hausmann, C. Cremer, “Confocal laser-scanning microscopy: in situ determination of the confocal point-spread function and the chromatic shifts in intact cell nuclei,” Optik 110, 194–198 (1999).

Proc. Natl. Acad. Sci. USA (3)

J. R. Lakowicz, H. Szmaczinski, K. Nowaczyk, “Fluorescence lifetime imaging,” Proc. Natl. Acad. Sci. USA 89, 1271–1275 (1992).
[CrossRef]

T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. Schmidt, M. Nagorny, S. W. Hell, “Subresolution axial measurements in far-field fluorescence microscopy with precision of 1 nanometer,” Rev. Sci. Instrum. 71, 2742–2745 (2000).
[CrossRef]

Science (2)

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, T. Reid, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef] [PubMed]

A. I. Lamond, W. C. Earnshaw, “Structure and function in the nucleus,” Science 280, 547–553 (1998).
[CrossRef] [PubMed]

Other (9)

A. V. Failla, A. Cavallo, C. Cremer are preparing a manuscript to be called “Subwavelength size determination with SMI virtual microscopy.”

M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective-lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds., Proc. SPIE2412, 147–156 (1995).
[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (University of Cambridge, Cambridge, UK, 1992).

Khoral Research Inc., 6200 Uptown Blvd. N.E., Suite 200, Albuquerque, N. Mex. 87110-4142, http://www.khoral.com .

B. Albrecht, A. V. Failla, R. Heintzmann, C. Cremer, “Spatially modulated illumination microscopy: online visualization of intensity distribution and prediction of nanometer precision of axial distance measurements by computer simulations,” J. Biomed. Opt. (to be published).

B. Schneider, B. Albrecht, P. Jaeckle, D. Neofotistos, S. Söding, T. Jäger, C. Cremer, “Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams,” in Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 321–330 (2000).
[CrossRef]

M. Hausmann, C. Cremer, J. Bradl, B. Schneider, “Wellenfeldmikroskop, Wellenfeldmikroskopieverfahren, auch zur DNA-Sequenzierung, und Kalibrierverfahren für die Wellenfeldmikroskopie” (Wavefield microscopy, wavefield microscopy procedures, also for DNA sequencing), German patent application DE 19830569A1 (7July1998).

C. Cremer, P. Edelmann, H. Bornfleth, G. Kreth, H. Muench, H. Luz, M. Hausmann, “Principles of spectral precision distance confocal microscopy of molecular nuclear structure,” in Handbook of Computer Vision and Applications, B. Jähne, H. Haussecker, P. Geissler, eds. (Academic, San Diego, Calif., 1999), Vol. 3.

P. Edelmann, C. Cremer, “Improvement of confocal spectral precision distance microscopy (SPDM),” Optical Diagnostics of Living Cells III, D. L. Farkas, R. C. Leif, eds., Proc. SPIE3921, 313–320 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of the SMI microscope.

Fig. 2
Fig. 2

Typical axial intensity distribution of one fluorescent object used for the axial distance measurements (TetraSpeck bead, d = 100 nm, λex = 647 nm). (a) Measured intensities (raw data). (b) Raw data after subtraction of the background. Dashed curve, calculated adaptation function.

Fig. 3
Fig. 3

Three-dimensional visualization of the 3D image stack from which the positions and distance results are presented in Figs. 4 and 5 (TetraSpeck beads, d = 100 nm, λex = 647 nm).

Fig. 4
Fig. 4

Measured consecutive axial positions of the four objects visualized in Fig. 3. Abscissa: 3D data stack index, respectively (each containing 400 optical sections), of consecutive, independent 3D measurements. The axial object positions (micrometer lateral distances) were changed in an almost identical manner.

Fig. 5
Fig. 5

Axial distances between two objects (positions shown in Fig. 4). The standard deviations of the individual axial distance determinations were 2.0, 1.0, 2.4, and 2.9 nm.

Tables (1)

Tables Icon

Table 1 Axial Distances between Seven Objects Measured Simultaneouslya

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Fz=A1 sinc2z-z1Bcos2z-z2C+A2 sinc2z-z3E,

Metrics