Abstract

An integrated optical waveguide refractometer, believed to be novel, is presented. The sensor is based on an antiresonant reflecting optical waveguide and uses the strong attenuation dependence on the refractive index of antiresonant cladding layers as the sensing principle. The theory and the operation of the sensor are discussed in terms of one- and two-dimensional geometry. The theoretical predictions and numerical analysis show that a versatile sensor can be realized. The design trade-offs are discussed, and the sensitivity and measurement range are presented.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Maisenholder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, J. Edlinger, “Monolithically integrated optical interferometer for refractometry,” Electron. Lett. 35, 986–988 (1997).
    [CrossRef]
  2. K. A. Remley, A. Weisshaar, “Design and analysis of a silicon-based antiresonant reflecting optical waveguide chemical sensor,” Opt. Lett. 21, 1241–1243 (1996).
    [CrossRef] [PubMed]
  3. G. J. Veldhuis, L. E. W. van der Veen, P. V. Lambeck, “Integrated optical refractometer based on waveguide bend loss,” J. Lightwave Technol. 15, 857–864 (1999).
    [CrossRef]
  4. J. M. Kubica, “Intensity modulation in antiresonant reflecting optical waveguides,” Opt. Lett. 20, 40–42 (1995).
    [CrossRef] [PubMed]
  5. K. Benaissa, A. Nathan, S. T. Chu, W. Huang, “IC compatible optical coupling technique for integration of ARROW with photodetector,” J. Lightwave Technol. 16, 1423–1432 (1996).
    [CrossRef]
  6. K. Benaissa, A. Nathan, “IC compatible optomechanical pressure sensors using Mach–Zehnder interferometry,” IEEE Trans. Electron Devices 43, 1571–1582 (1996).
    [CrossRef]
  7. L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
    [CrossRef]
  8. D. Westberg, O. Paul, G. I. Andersson, H. Baltes, “A CMOS-compatible device for fluid density measurements,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (MEMS ’97) (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 278–283.
  9. S. Wu, Q. Lin, Y. Yuen, Y. C. Thai, “MEMS flow sensors for nano-fluidic applications,” Sens. Actuators A 89, 152–158 (2001).
    [CrossRef]
  10. W. Huang, R. M. Shubair, A. Nathan, Y. L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol. 10, 1015–1022 (1992).
    [CrossRef]
  11. J. C. Grant, J. C. Beal, N. J. P. Frenette, “Finite element analysis of the ARROW leaky optical waveguide,” IEEE J. Quantum Electron. 30, 1250–1253 (1994).
    [CrossRef]
  12. W. P. Huang, C. L. Xu, W. Lui, K. Yokoyama, “The perfectly matched layer boundary condition for modal analysis of optical waveguides: leaky mode calculation,” IEEE Photon. Technol. Lett. 8, 652–654 (1996).
    [CrossRef]

2001 (1)

S. Wu, Q. Lin, Y. Yuen, Y. C. Thai, “MEMS flow sensors for nano-fluidic applications,” Sens. Actuators A 89, 152–158 (2001).
[CrossRef]

2000 (1)

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

1999 (1)

G. J. Veldhuis, L. E. W. van der Veen, P. V. Lambeck, “Integrated optical refractometer based on waveguide bend loss,” J. Lightwave Technol. 15, 857–864 (1999).
[CrossRef]

1997 (1)

B. Maisenholder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, J. Edlinger, “Monolithically integrated optical interferometer for refractometry,” Electron. Lett. 35, 986–988 (1997).
[CrossRef]

1996 (4)

K. Benaissa, A. Nathan, “IC compatible optomechanical pressure sensors using Mach–Zehnder interferometry,” IEEE Trans. Electron Devices 43, 1571–1582 (1996).
[CrossRef]

W. P. Huang, C. L. Xu, W. Lui, K. Yokoyama, “The perfectly matched layer boundary condition for modal analysis of optical waveguides: leaky mode calculation,” IEEE Photon. Technol. Lett. 8, 652–654 (1996).
[CrossRef]

K. A. Remley, A. Weisshaar, “Design and analysis of a silicon-based antiresonant reflecting optical waveguide chemical sensor,” Opt. Lett. 21, 1241–1243 (1996).
[CrossRef] [PubMed]

K. Benaissa, A. Nathan, S. T. Chu, W. Huang, “IC compatible optical coupling technique for integration of ARROW with photodetector,” J. Lightwave Technol. 16, 1423–1432 (1996).
[CrossRef]

1995 (1)

1994 (1)

J. C. Grant, J. C. Beal, N. J. P. Frenette, “Finite element analysis of the ARROW leaky optical waveguide,” IEEE J. Quantum Electron. 30, 1250–1253 (1994).
[CrossRef]

1992 (1)

W. Huang, R. M. Shubair, A. Nathan, Y. L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol. 10, 1015–1022 (1992).
[CrossRef]

Andersson, G. I.

D. Westberg, O. Paul, G. I. Andersson, H. Baltes, “A CMOS-compatible device for fluid density measurements,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (MEMS ’97) (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 278–283.

Baltes, H.

D. Westberg, O. Paul, G. I. Andersson, H. Baltes, “A CMOS-compatible device for fluid density measurements,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (MEMS ’97) (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 278–283.

Beal, J. C.

J. C. Grant, J. C. Beal, N. J. P. Frenette, “Finite element analysis of the ARROW leaky optical waveguide,” IEEE J. Quantum Electron. 30, 1250–1253 (1994).
[CrossRef]

Benaissa, K.

K. Benaissa, A. Nathan, “IC compatible optomechanical pressure sensors using Mach–Zehnder interferometry,” IEEE Trans. Electron Devices 43, 1571–1582 (1996).
[CrossRef]

K. Benaissa, A. Nathan, S. T. Chu, W. Huang, “IC compatible optical coupling technique for integration of ARROW with photodetector,” J. Lightwave Technol. 16, 1423–1432 (1996).
[CrossRef]

Chow, Y. L.

W. Huang, R. M. Shubair, A. Nathan, Y. L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol. 10, 1015–1022 (1992).
[CrossRef]

Chu, S. T.

Edlinger, J.

B. Maisenholder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, J. Edlinger, “Monolithically integrated optical interferometer for refractometry,” Electron. Lett. 35, 986–988 (1997).
[CrossRef]

Eldada, L.

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

Frenette, N. J. P.

J. C. Grant, J. C. Beal, N. J. P. Frenette, “Finite element analysis of the ARROW leaky optical waveguide,” IEEE J. Quantum Electron. 30, 1250–1253 (1994).
[CrossRef]

Grant, J. C.

J. C. Grant, J. C. Beal, N. J. P. Frenette, “Finite element analysis of the ARROW leaky optical waveguide,” IEEE J. Quantum Electron. 30, 1250–1253 (1994).
[CrossRef]

Huang, W.

K. Benaissa, A. Nathan, S. T. Chu, W. Huang, “IC compatible optical coupling technique for integration of ARROW with photodetector,” J. Lightwave Technol. 16, 1423–1432 (1996).
[CrossRef]

W. Huang, R. M. Shubair, A. Nathan, Y. L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol. 10, 1015–1022 (1992).
[CrossRef]

Huang, W. P.

W. P. Huang, C. L. Xu, W. Lui, K. Yokoyama, “The perfectly matched layer boundary condition for modal analysis of optical waveguides: leaky mode calculation,” IEEE Photon. Technol. Lett. 8, 652–654 (1996).
[CrossRef]

Kubica, J. M.

Kunz, R. E.

B. Maisenholder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, J. Edlinger, “Monolithically integrated optical interferometer for refractometry,” Electron. Lett. 35, 986–988 (1997).
[CrossRef]

Lambeck, P. V.

G. J. Veldhuis, L. E. W. van der Veen, P. V. Lambeck, “Integrated optical refractometer based on waveguide bend loss,” J. Lightwave Technol. 15, 857–864 (1999).
[CrossRef]

Lin, Q.

S. Wu, Q. Lin, Y. Yuen, Y. C. Thai, “MEMS flow sensors for nano-fluidic applications,” Sens. Actuators A 89, 152–158 (2001).
[CrossRef]

Lui, W.

W. P. Huang, C. L. Xu, W. Lui, K. Yokoyama, “The perfectly matched layer boundary condition for modal analysis of optical waveguides: leaky mode calculation,” IEEE Photon. Technol. Lett. 8, 652–654 (1996).
[CrossRef]

Maisenholder, B.

B. Maisenholder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, J. Edlinger, “Monolithically integrated optical interferometer for refractometry,” Electron. Lett. 35, 986–988 (1997).
[CrossRef]

Moser, M.

B. Maisenholder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, J. Edlinger, “Monolithically integrated optical interferometer for refractometry,” Electron. Lett. 35, 986–988 (1997).
[CrossRef]

Nathan, A.

K. Benaissa, A. Nathan, S. T. Chu, W. Huang, “IC compatible optical coupling technique for integration of ARROW with photodetector,” J. Lightwave Technol. 16, 1423–1432 (1996).
[CrossRef]

K. Benaissa, A. Nathan, “IC compatible optomechanical pressure sensors using Mach–Zehnder interferometry,” IEEE Trans. Electron Devices 43, 1571–1582 (1996).
[CrossRef]

W. Huang, R. M. Shubair, A. Nathan, Y. L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol. 10, 1015–1022 (1992).
[CrossRef]

Paul, O.

D. Westberg, O. Paul, G. I. Andersson, H. Baltes, “A CMOS-compatible device for fluid density measurements,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (MEMS ’97) (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 278–283.

Remley, K. A.

Riel, P.

B. Maisenholder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, J. Edlinger, “Monolithically integrated optical interferometer for refractometry,” Electron. Lett. 35, 986–988 (1997).
[CrossRef]

Shacklette, L. W.

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

Shubair, R. M.

W. Huang, R. M. Shubair, A. Nathan, Y. L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol. 10, 1015–1022 (1992).
[CrossRef]

Thai, Y. C.

S. Wu, Q. Lin, Y. Yuen, Y. C. Thai, “MEMS flow sensors for nano-fluidic applications,” Sens. Actuators A 89, 152–158 (2001).
[CrossRef]

van der Veen, L. E. W.

G. J. Veldhuis, L. E. W. van der Veen, P. V. Lambeck, “Integrated optical refractometer based on waveguide bend loss,” J. Lightwave Technol. 15, 857–864 (1999).
[CrossRef]

Veldhuis, G. J.

G. J. Veldhuis, L. E. W. van der Veen, P. V. Lambeck, “Integrated optical refractometer based on waveguide bend loss,” J. Lightwave Technol. 15, 857–864 (1999).
[CrossRef]

Weisshaar, A.

Westberg, D.

D. Westberg, O. Paul, G. I. Andersson, H. Baltes, “A CMOS-compatible device for fluid density measurements,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (MEMS ’97) (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 278–283.

Wu, S.

S. Wu, Q. Lin, Y. Yuen, Y. C. Thai, “MEMS flow sensors for nano-fluidic applications,” Sens. Actuators A 89, 152–158 (2001).
[CrossRef]

Xu, C. L.

W. P. Huang, C. L. Xu, W. Lui, K. Yokoyama, “The perfectly matched layer boundary condition for modal analysis of optical waveguides: leaky mode calculation,” IEEE Photon. Technol. Lett. 8, 652–654 (1996).
[CrossRef]

Yokoyama, K.

W. P. Huang, C. L. Xu, W. Lui, K. Yokoyama, “The perfectly matched layer boundary condition for modal analysis of optical waveguides: leaky mode calculation,” IEEE Photon. Technol. Lett. 8, 652–654 (1996).
[CrossRef]

Yuen, Y.

S. Wu, Q. Lin, Y. Yuen, Y. C. Thai, “MEMS flow sensors for nano-fluidic applications,” Sens. Actuators A 89, 152–158 (2001).
[CrossRef]

Zappe, H. P.

B. Maisenholder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, J. Edlinger, “Monolithically integrated optical interferometer for refractometry,” Electron. Lett. 35, 986–988 (1997).
[CrossRef]

Electron. Lett. (1)

B. Maisenholder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, J. Edlinger, “Monolithically integrated optical interferometer for refractometry,” Electron. Lett. 35, 986–988 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. C. Grant, J. C. Beal, N. J. P. Frenette, “Finite element analysis of the ARROW leaky optical waveguide,” IEEE J. Quantum Electron. 30, 1250–1253 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. P. Huang, C. L. Xu, W. Lui, K. Yokoyama, “The perfectly matched layer boundary condition for modal analysis of optical waveguides: leaky mode calculation,” IEEE Photon. Technol. Lett. 8, 652–654 (1996).
[CrossRef]

IEEE Trans. Electron Devices (1)

K. Benaissa, A. Nathan, “IC compatible optomechanical pressure sensors using Mach–Zehnder interferometry,” IEEE Trans. Electron Devices 43, 1571–1582 (1996).
[CrossRef]

J. Lightwave Technol. (3)

W. Huang, R. M. Shubair, A. Nathan, Y. L. Chow, “The modal characteristics of ARROW structures,” J. Lightwave Technol. 10, 1015–1022 (1992).
[CrossRef]

K. Benaissa, A. Nathan, S. T. Chu, W. Huang, “IC compatible optical coupling technique for integration of ARROW with photodetector,” J. Lightwave Technol. 16, 1423–1432 (1996).
[CrossRef]

G. J. Veldhuis, L. E. W. van der Veen, P. V. Lambeck, “Integrated optical refractometer based on waveguide bend loss,” J. Lightwave Technol. 15, 857–864 (1999).
[CrossRef]

Opt. Lett. (2)

Sens. Actuators A (1)

S. Wu, Q. Lin, Y. Yuen, Y. C. Thai, “MEMS flow sensors for nano-fluidic applications,” Sens. Actuators A 89, 152–158 (2001).
[CrossRef]

Other (1)

D. Westberg, O. Paul, G. I. Andersson, H. Baltes, “A CMOS-compatible device for fluid density measurements,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (MEMS ’97) (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 278–283.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the ARROW sensor.

Fig. 2
Fig. 2

Attenuation of the TE fundamental mode in the equivalent slab waveguide as a function of the refractive-index contrast Δn = n m - n 2.

Fig. 3
Fig. 3

Theoretical field distribution of the TE fundamental mode for d 2 = 2 µm.

Fig. 4
Fig. 4

Attenuation of the TE fundamental mode in the sensor structure as a function of the refractive-index contrast Δn = n m - n 2.

Fig. 5
Fig. 5

Normalized output power P N = P out/P in of the two-dimensional (2-D) sensor structure; the microchannel width is L = 2000 µm.

Fig. 6
Fig. 6

Sensitivity of the 2-D sensor structure; the microchannel width is L = 2000 µm.

Fig. 7
Fig. 7

Normalized output power P N = P out/P in of the 2-D sensor structure; for d 2 = 2 ± 0.01 µm and d 2 = 2 ± 0.1 µm, the microchannel width is L = 2000 µm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d1,2=λ4n1,21-ncn1,22+λ2ncdce2-1/22N+1,
dce=dc+λ2πnc2-n02,
R-R+ exp-j2kxdc=1,
kz=nc2k2-kx21/2,
Δnr=λ221d22-1dce2+nc21/2-n2.

Metrics