Abstract

The concept of refractive-index matching to enhance the optical penetration depth of whole blood is discussed on the basis of in vitro studies that used the technique of near-infrared optical coherence tomography. It was found that optical clearing of blood is defined not only by refractive-index matching but also by changes in the size of red blood cells and in their aggregation ability when chemicals are added. For example, in whole blood diluted to twice its volume by saline with the addition of 6.5% glycerol, the total attenuation coefficient was reduced from 4.2 to 2.0 mm-1, and the optical penetration at 820 nm was correspondingly increased to 117%. For the other agents tested (glucose, dextrans, propylene glycol, and trazograph) the enhancement of penetration was 20–150.5%. In the blood sedimentation study, regular or irregular oscillations or jumps of the red-blood cell–plasma boundary were observed. The 1-min time period of regular oscillations correlated well with the kinetics of the aggregation process as described by the two subsequent stages of formation of linear and three-dimensional aggregates. The results also showed that optical clearing of blood by osmotic agents is potentially useful not only in blood sedimentation and aggregation studies but also in intravascular optical coherence tomography imaging techniques.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
    [CrossRef] [PubMed]
  2. J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News (Aug.1997), pp. 41–47, 65.
  3. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Vol. TT38 of SPIE Tutorial Texts in Optical Engineering (SPIE, Bellingham, Wash., 2000).
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  5. V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Y. I. Khanin, D. V. Shabanov, N. D. Gladkova, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, “Coherent optical tomography of microscopic inhomogeneities in biological tissues,” JETP Lett. 61, 158–162 (1995).
  6. J. M. Schmitt, A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
    [CrossRef]
  7. X. Wang, T. Milner, Z. Chen, J. S. Nelson, “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography,” Appl. Opt. 36, 144–149 (1997).
    [CrossRef] [PubMed]
  8. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
    [CrossRef]
  9. M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology,” Circulation 93, 1206–1213 (1996).
    [CrossRef] [PubMed]
  10. P. Patwari, N. J. Weissman, S. A. Boppart, C. A. Jesser, d. Stamper, J. G. Fujimoto, M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high frequency ultrasound,” Am. J. Cardiol. 85, 641–644 (2000).
    [CrossRef] [PubMed]
  11. J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intraarterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
    [PubMed]
  12. V. V. Bakutkin, I. L. Maksimova, P. I. Saprykin, V. V. Tuchin, L. P. Shubochkin, “Light scattering by human eye sclera,” J. Appl. Spectrosc. (USSR) 46, 104–107 (1987).
    [CrossRef]
  13. A. P. Ivanov, S. A. Makarevich, A. Ya. Khairullina, “Radiation propagation in tissues and liquids with close particle packing,” J. Appl. Spectrosc. (USSR) 47, 1077–1082 (1988).
    [CrossRef]
  14. R. K. Wang, V. V. Tuchin, X. Xu, J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18, 948–953 (2001).
    [CrossRef]
  15. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062–2064 (1994).
    [CrossRef] [PubMed]
  16. M. Kohl, M. Cope, M. Essenpreis, D. Bocker, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett. 19, 2170–2172 (1994).
    [CrossRef] [PubMed]
  17. B. Chance, H. Liu, T. Kitai, Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351–362 (1995).
    [CrossRef] [PubMed]
  18. H. Liu, B. Beauvoit, M. Kimura, B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).
    [CrossRef] [PubMed]
  19. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401–417 (1997).
    [CrossRef] [PubMed]
  20. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, D. Böcker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
    [CrossRef] [PubMed]
  21. E. Lankenau, J. Welzel, R. Birngruber, R. Engelhardt, “In vivo tissue measurements with optical low coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 78–84 (1997).
  22. G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, A. J. Welch, “Use of an agent to reduce scattering in skin,” Laser Surg. Med. 24, 138–141 (1999).
    [CrossRef]
  23. V. V. Tuchin, “Coherent optical techniques for the analysis of tissue structure and dynamics,” J. Biomed. Opt. 4, 106–124 (1999).
    [CrossRef] [PubMed]
  24. V. V. Tuchin, “Controlling of tissue optical properties,” in Optical Technologies in Biophysics and Medicine, V. V. Tuchin, D. A. Zimnyakov, A. B. Pravdin, eds., Proc. SPIE4001, 30–53 (2000).
    [CrossRef]
  25. V. V. Tuchin, “Immersion effects in tissues,” in Controlling Tissue Optical Properties: Applications in Clinical Study, V. V. Tuchin, ed., Proc. SPIE4162, 1–12 (2000).
    [CrossRef]
  26. R. K. Wang, “Modelling optical properties of soft tissue by fractal distribution of scatters,” J. Mod. Opt. 47, 103–120 (2000).
  27. A. N. Bashkatov, E. A. Genina, I. V. Korovina, V. I. Kochubey, Yu. P. Sinichkin, V. V. Tuchin, “In vivo and in vitro study of control of rat skin optical properties by action of osmotical liquid,” in Biomedical Photonics and Optoelectronic Imaging, H. Liu, Q. Luo, eds., Proc. SPIE4224, 300–311 (2000).
  28. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Mueller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
    [CrossRef] [PubMed]
  29. S. Yu. Shchyogolev, “Inverse problems of spectroturbidimetry of biological disperse systems: an overview,” J. Biomed. Opt. 4, 490–503 (1999).
    [CrossRef] [PubMed]
  30. V. L. Voeikov, Yu. S. Bulargina, E. V. Buravleva, S. E. Kondakov, “Non-equilibrium and coherent properties of whole blood revealed by analysis of its sedimentation behavior,” in Biophotonics and Coherent Systems, Proceedings of the 2nd Alexander Gurwitsch Conference and Additional Contributions, L. Beloussov, F.-A. Popp, V. Voeikov, R. van Wijk, eds., Vol. 6 of Biophotonics and Coherent Systems (Moscow U. Press, Moscow, 2000), pp. 75–93.
  31. A. V. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, I. V. Sirko, “Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique,” J. Biomed. Opt. 4, 76–84 (1999).
    [CrossRef] [PubMed]
  32. I. Fine, B. Fikhte, L. D. Shvartsman, “RBC aggregation assisted light transmission through blood and occlusion oximetry,” in Controlling Tissue Optical Properties: Applications in Clinical Study, V. V. Tuchin, ed., Proc. SPIE4162, 130–139 (2000).
    [CrossRef]
  33. M. Brezinski, K. Saunders, C. Jesser, X. Li, J. Fujimoto, “Index matching to improve OCT imaging through blood,” Circulation 103, 1999–2003 (2001).
    [CrossRef] [PubMed]
  34. V. V. Tuchin, X. Xu, R. K. Wang, J. B. Elder, “Whole blood and RBC sedimentation and aggregation study using OCT,” in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev, G. L. Cote, eds., Proc. SPIE4263, 143–149 (2001).
    [CrossRef]
  35. X. Xu, V. V. Tuchin, R. K. Wang, J. B. Elder, “Immersion technique as a tool for in depth OCT imaging through the blood and body’s interior tissues,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V, V. V. Tuchin, J. A. Izat, J. G. Fujimoto, eds., Proc. SPIE4251, 89–96 (2001).
    [CrossRef]
  36. R. K. Wang, “Resolution improved optical coherence-gated tomography for imaging through biological tissues,” J. Mod. Opt. 46, 1905–1912 (1999).
  37. F. A. Duck, Physical Properties of Tissue. A Comprehensive Reference Book (Academic, London, 1990).
  38. J. M. Schmitt, A. Knüttel, A. Gandjbakhche, “Optical characterization of dense tissues using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE1889, 197–211 (1993).
    [CrossRef]
  39. Z. S. Sacks, D. L. Craig, R. M. Kurtz, T. Juhasz, G. Mourou, “Spatially resolved transmission of highly focused beams through the cornea and sclera between 1400 and 1800 nm,” in Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, V. V. Tuchin, ed., Proc. SPIE3726, 522–527 (1998).
    [CrossRef]
  40. A. H. Gandjbakhche, P. Mills, P. Snabre, “Light-scattering technique for the study of orientation and deformation of red blood cells in a concentrated suspension,” Appl. Opt. 33, 1070–1078 (1994).
    [CrossRef] [PubMed]
  41. I. L. Maksimova, D. A. Zimnyakov, V. V. Tuchin, “Controlling of tissue optical properties. I. Spectral characteristics of eye sclera,” Opt. Spectrosc. 89, 86–95 (2000).
    [CrossRef]
  42. V. L. Voeikov, C. N. Novikov, N. D. Vilenskaya, “Low-level chemiluminescent analysis of nondiluted human blood reveals its dynamic system properties,” J. Biomed. Opt. 4, 54–60 (1999).
    [CrossRef] [PubMed]
  43. A. Knuettel, M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5, 83–92 (2000).
    [CrossRef]
  44. R. P. Hemenger, “Refractive index changes in the ocular lens result from increased light scatter,” J. Biomed. Opt. 1, 268–272 (1996).
    [CrossRef] [PubMed]

2001 (2)

R. K. Wang, V. V. Tuchin, X. Xu, J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18, 948–953 (2001).
[CrossRef]

M. Brezinski, K. Saunders, C. Jesser, X. Li, J. Fujimoto, “Index matching to improve OCT imaging through blood,” Circulation 103, 1999–2003 (2001).
[CrossRef] [PubMed]

2000 (4)

R. K. Wang, “Modelling optical properties of soft tissue by fractal distribution of scatters,” J. Mod. Opt. 47, 103–120 (2000).

I. L. Maksimova, D. A. Zimnyakov, V. V. Tuchin, “Controlling of tissue optical properties. I. Spectral characteristics of eye sclera,” Opt. Spectrosc. 89, 86–95 (2000).
[CrossRef]

A. Knuettel, M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5, 83–92 (2000).
[CrossRef]

P. Patwari, N. J. Weissman, S. A. Boppart, C. A. Jesser, d. Stamper, J. G. Fujimoto, M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high frequency ultrasound,” Am. J. Cardiol. 85, 641–644 (2000).
[CrossRef] [PubMed]

1999 (8)

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intraarterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

V. L. Voeikov, C. N. Novikov, N. D. Vilenskaya, “Low-level chemiluminescent analysis of nondiluted human blood reveals its dynamic system properties,” J. Biomed. Opt. 4, 54–60 (1999).
[CrossRef] [PubMed]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Mueller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

S. Yu. Shchyogolev, “Inverse problems of spectroturbidimetry of biological disperse systems: an overview,” J. Biomed. Opt. 4, 490–503 (1999).
[CrossRef] [PubMed]

A. V. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, I. V. Sirko, “Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique,” J. Biomed. Opt. 4, 76–84 (1999).
[CrossRef] [PubMed]

R. K. Wang, “Resolution improved optical coherence-gated tomography for imaging through biological tissues,” J. Mod. Opt. 46, 1905–1912 (1999).

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, A. J. Welch, “Use of an agent to reduce scattering in skin,” Laser Surg. Med. 24, 138–141 (1999).
[CrossRef]

V. V. Tuchin, “Coherent optical techniques for the analysis of tissue structure and dynamics,” J. Biomed. Opt. 4, 106–124 (1999).
[CrossRef] [PubMed]

1997 (6)

1996 (4)

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef] [PubMed]

R. P. Hemenger, “Refractive index changes in the ocular lens result from increased light scatter,” J. Biomed. Opt. 1, 268–272 (1996).
[CrossRef] [PubMed]

H. Liu, B. Beauvoit, M. Kimura, B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).
[CrossRef] [PubMed]

1995 (2)

V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Y. I. Khanin, D. V. Shabanov, N. D. Gladkova, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, “Coherent optical tomography of microscopic inhomogeneities in biological tissues,” JETP Lett. 61, 158–162 (1995).

B. Chance, H. Liu, T. Kitai, Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351–362 (1995).
[CrossRef] [PubMed]

1994 (3)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1988 (1)

A. P. Ivanov, S. A. Makarevich, A. Ya. Khairullina, “Radiation propagation in tissues and liquids with close particle packing,” J. Appl. Spectrosc. (USSR) 47, 1077–1082 (1988).
[CrossRef]

1987 (1)

V. V. Bakutkin, I. L. Maksimova, P. I. Saprykin, V. V. Tuchin, L. P. Shubochkin, “Light scattering by human eye sclera,” J. Appl. Spectrosc. (USSR) 46, 104–107 (1987).
[CrossRef]

Bakutkin, V. V.

V. V. Bakutkin, I. L. Maksimova, P. I. Saprykin, V. V. Tuchin, L. P. Shubochkin, “Light scattering by human eye sclera,” J. Appl. Spectrosc. (USSR) 46, 104–107 (1987).
[CrossRef]

Barton, J. K.

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, A. J. Welch, “Use of an agent to reduce scattering in skin,” Laser Surg. Med. 24, 138–141 (1999).
[CrossRef]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, I. V. Korovina, V. I. Kochubey, Yu. P. Sinichkin, V. V. Tuchin, “In vivo and in vitro study of control of rat skin optical properties by action of osmotical liquid,” in Biomedical Photonics and Optoelectronic Imaging, H. Liu, Q. Luo, eds., Proc. SPIE4224, 300–311 (2000).

Beauvoit, B.

H. Liu, B. Beauvoit, M. Kimura, B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).
[CrossRef] [PubMed]

Berger, M.

Birngruber, R.

E. Lankenau, J. Welzel, R. Birngruber, R. Engelhardt, “In vivo tissue measurements with optical low coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 78–84 (1997).

Bocker, D.

Böcker, D.

Boehlau-Godau, M.

A. Knuettel, M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5, 83–92 (2000).
[CrossRef]

Boppart, S. A.

P. Patwari, N. J. Weissman, S. A. Boppart, C. A. Jesser, d. Stamper, J. G. Fujimoto, M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high frequency ultrasound,” Am. J. Cardiol. 85, 641–644 (2000).
[CrossRef] [PubMed]

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intraarterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

Bouma, B. E.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intraarterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

Brezinski, M.

M. Brezinski, K. Saunders, C. Jesser, X. Li, J. Fujimoto, “Index matching to improve OCT imaging through blood,” Circulation 103, 1999–2003 (2001).
[CrossRef] [PubMed]

Brezinski, M. E.

P. Patwari, N. J. Weissman, S. A. Boppart, C. A. Jesser, d. Stamper, J. G. Fujimoto, M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high frequency ultrasound,” Am. J. Cardiol. 85, 641–644 (2000).
[CrossRef] [PubMed]

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intraarterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

Bruulsema, J. T.

Bulargina, Yu. S.

V. L. Voeikov, Yu. S. Bulargina, E. V. Buravleva, S. E. Kondakov, “Non-equilibrium and coherent properties of whole blood revealed by analysis of its sedimentation behavior,” in Biophotonics and Coherent Systems, Proceedings of the 2nd Alexander Gurwitsch Conference and Additional Contributions, L. Beloussov, F.-A. Popp, V. Voeikov, R. van Wijk, eds., Vol. 6 of Biophotonics and Coherent Systems (Moscow U. Press, Moscow, 2000), pp. 75–93.

Buravleva, E. V.

V. L. Voeikov, Yu. S. Bulargina, E. V. Buravleva, S. E. Kondakov, “Non-equilibrium and coherent properties of whole blood revealed by analysis of its sedimentation behavior,” in Biophotonics and Coherent Systems, Proceedings of the 2nd Alexander Gurwitsch Conference and Additional Contributions, L. Beloussov, F.-A. Popp, V. Voeikov, R. van Wijk, eds., Vol. 6 of Biophotonics and Coherent Systems (Moscow U. Press, Moscow, 2000), pp. 75–93.

Chan, E. K.

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, A. J. Welch, “Use of an agent to reduce scattering in skin,” Laser Surg. Med. 24, 138–141 (1999).
[CrossRef]

Chance, B.

H. Liu, B. Beauvoit, M. Kimura, B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).
[CrossRef] [PubMed]

B. Chance, H. Liu, T. Kitai, Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351–362 (1995).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

Cope, M.

Craig, D. L.

Z. S. Sacks, D. L. Craig, R. M. Kurtz, T. Juhasz, G. Mourou, “Spatially resolved transmission of highly focused beams through the cornea and sclera between 1400 and 1800 nm,” in Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, V. V. Tuchin, ed., Proc. SPIE3726, 522–527 (1998).
[CrossRef]

Dorschel, K.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Mueller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Duck, F. A.

F. A. Duck, Physical Properties of Tissue. A Comprehensive Reference Book (Academic, London, 1990).

Elder, J. B.

R. K. Wang, V. V. Tuchin, X. Xu, J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18, 948–953 (2001).
[CrossRef]

X. Xu, V. V. Tuchin, R. K. Wang, J. B. Elder, “Immersion technique as a tool for in depth OCT imaging through the blood and body’s interior tissues,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V, V. V. Tuchin, J. A. Izat, J. G. Fujimoto, eds., Proc. SPIE4251, 89–96 (2001).
[CrossRef]

V. V. Tuchin, X. Xu, R. K. Wang, J. B. Elder, “Whole blood and RBC sedimentation and aggregation study using OCT,” in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev, G. L. Cote, eds., Proc. SPIE4263, 143–149 (2001).
[CrossRef]

Engelhardt, R.

E. Lankenau, J. Welzel, R. Birngruber, R. Engelhardt, “In vivo tissue measurements with optical low coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 78–84 (1997).

Essenpreis, M.

Fantini, S.

Farrell, T. J.

Feldshtein, F. I.

V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Y. I. Khanin, D. V. Shabanov, N. D. Gladkova, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, “Coherent optical tomography of microscopic inhomogeneities in biological tissues,” JETP Lett. 61, 158–162 (1995).

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef] [PubMed]

Fikhte, B.

I. Fine, B. Fikhte, L. D. Shvartsman, “RBC aggregation assisted light transmission through blood and occlusion oximetry,” in Controlling Tissue Optical Properties: Applications in Clinical Study, V. V. Tuchin, ed., Proc. SPIE4162, 130–139 (2000).
[CrossRef]

Fine, I.

I. Fine, B. Fikhte, L. D. Shvartsman, “RBC aggregation assisted light transmission through blood and occlusion oximetry,” in Controlling Tissue Optical Properties: Applications in Clinical Study, V. V. Tuchin, ed., Proc. SPIE4162, 130–139 (2000).
[CrossRef]

Firsov, N. N.

A. V. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, I. V. Sirko, “Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique,” J. Biomed. Opt. 4, 76–84 (1999).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Franceschini, M. A.

Friebel, M.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Mueller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Fujimoto, J.

M. Brezinski, K. Saunders, C. Jesser, X. Li, J. Fujimoto, “Index matching to improve OCT imaging through blood,” Circulation 103, 1999–2003 (2001).
[CrossRef] [PubMed]

Fujimoto, J. G.

P. Patwari, N. J. Weissman, S. A. Boppart, C. A. Jesser, d. Stamper, J. G. Fujimoto, M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high frequency ultrasound,” Am. J. Cardiol. 85, 641–644 (2000).
[CrossRef] [PubMed]

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intraarterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gandjbakhche, A.

J. M. Schmitt, A. Knüttel, A. Gandjbakhche, “Optical characterization of dense tissues using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE1889, 197–211 (1993).
[CrossRef]

Gandjbakhche, A. H.

Gelikonov, G. V.

V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Y. I. Khanin, D. V. Shabanov, N. D. Gladkova, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, “Coherent optical tomography of microscopic inhomogeneities in biological tissues,” JETP Lett. 61, 158–162 (1995).

Gelikonov, V. M.

V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Y. I. Khanin, D. V. Shabanov, N. D. Gladkova, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, “Coherent optical tomography of microscopic inhomogeneities in biological tissues,” JETP Lett. 61, 158–162 (1995).

Genina, E. A.

A. N. Bashkatov, E. A. Genina, I. V. Korovina, V. I. Kochubey, Yu. P. Sinichkin, V. V. Tuchin, “In vivo and in vitro study of control of rat skin optical properties by action of osmotical liquid,” in Biomedical Photonics and Optoelectronic Imaging, H. Liu, Q. Luo, eds., Proc. SPIE4224, 300–311 (2000).

Gladkova, N. D.

V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Y. I. Khanin, D. V. Shabanov, N. D. Gladkova, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, “Coherent optical tomography of microscopic inhomogeneities in biological tissues,” JETP Lett. 61, 158–162 (1995).

Gratton, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hahn, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Mueller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Hayward, J. E.

Hee, M. R.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Heinemann, L.

Hemenger, R. P.

R. P. Hemenger, “Refractive index changes in the ocular lens result from increased light scatter,” J. Biomed. Opt. 1, 268–272 (1996).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ivanov, A. P.

A. P. Ivanov, S. A. Makarevich, A. Ya. Khairullina, “Radiation propagation in tissues and liquids with close particle packing,” J. Appl. Spectrosc. (USSR) 47, 1077–1082 (1988).
[CrossRef]

Izatt, J. A.

J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News (Aug.1997), pp. 41–47, 65.

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
[CrossRef]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

Jesser, C.

M. Brezinski, K. Saunders, C. Jesser, X. Li, J. Fujimoto, “Index matching to improve OCT imaging through blood,” Circulation 103, 1999–2003 (2001).
[CrossRef] [PubMed]

Jesser, C. A.

P. Patwari, N. J. Weissman, S. A. Boppart, C. A. Jesser, d. Stamper, J. G. Fujimoto, M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high frequency ultrasound,” Am. J. Cardiol. 85, 641–644 (2000).
[CrossRef] [PubMed]

Juhasz, T.

Z. S. Sacks, D. L. Craig, R. M. Kurtz, T. Juhasz, G. Mourou, “Spatially resolved transmission of highly focused beams through the cornea and sclera between 1400 and 1800 nm,” in Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, V. V. Tuchin, ed., Proc. SPIE3726, 522–527 (1998).
[CrossRef]

Khairullina, A. Ya.

A. P. Ivanov, S. A. Makarevich, A. Ya. Khairullina, “Radiation propagation in tissues and liquids with close particle packing,” J. Appl. Spectrosc. (USSR) 47, 1077–1082 (1988).
[CrossRef]

Khanin, Y. I.

V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Y. I. Khanin, D. V. Shabanov, N. D. Gladkova, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, “Coherent optical tomography of microscopic inhomogeneities in biological tissues,” JETP Lett. 61, 158–162 (1995).

Kimura, M.

H. Liu, B. Beauvoit, M. Kimura, B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).
[CrossRef] [PubMed]

Kitai, T.

B. Chance, H. Liu, T. Kitai, Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351–362 (1995).
[CrossRef] [PubMed]

Knuettel, A.

A. Knuettel, M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5, 83–92 (2000).
[CrossRef]

Knuttel, A.

Knüttel, A.

J. M. Schmitt, A. Knüttel, A. Gandjbakhche, “Optical characterization of dense tissues using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE1889, 197–211 (1993).
[CrossRef]

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News (Aug.1997), pp. 41–47, 65.

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, I. V. Korovina, V. I. Kochubey, Yu. P. Sinichkin, V. V. Tuchin, “In vivo and in vitro study of control of rat skin optical properties by action of osmotical liquid,” in Biomedical Photonics and Optoelectronic Imaging, H. Liu, Q. Luo, eds., Proc. SPIE4224, 300–311 (2000).

Kohl, M.

Kon, I. L.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401–417 (1997).
[CrossRef] [PubMed]

Kondakov, S. E.

V. L. Voeikov, Yu. S. Bulargina, E. V. Buravleva, S. E. Kondakov, “Non-equilibrium and coherent properties of whole blood revealed by analysis of its sedimentation behavior,” in Biophotonics and Coherent Systems, Proceedings of the 2nd Alexander Gurwitsch Conference and Additional Contributions, L. Beloussov, F.-A. Popp, V. Voeikov, R. van Wijk, eds., Vol. 6 of Biophotonics and Coherent Systems (Moscow U. Press, Moscow, 2000), pp. 75–93.

Korovina, I. V.

A. N. Bashkatov, E. A. Genina, I. V. Korovina, V. I. Kochubey, Yu. P. Sinichkin, V. V. Tuchin, “In vivo and in vitro study of control of rat skin optical properties by action of osmotical liquid,” in Biomedical Photonics and Optoelectronic Imaging, H. Liu, Q. Luo, eds., Proc. SPIE4224, 300–311 (2000).

Koschinsky, T.

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News (Aug.1997), pp. 41–47, 65.

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
[CrossRef]

Kuranov, R. V.

V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Y. I. Khanin, D. V. Shabanov, N. D. Gladkova, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, “Coherent optical tomography of microscopic inhomogeneities in biological tissues,” JETP Lett. 61, 158–162 (1995).

Kurtz, R. M.

Z. S. Sacks, D. L. Craig, R. M. Kurtz, T. Juhasz, G. Mourou, “Spatially resolved transmission of highly focused beams through the cornea and sclera between 1400 and 1800 nm,” in Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, V. V. Tuchin, ed., Proc. SPIE3726, 522–527 (1998).
[CrossRef]

Lankenau, E.

E. Lankenau, J. Welzel, R. Birngruber, R. Engelhardt, “In vivo tissue measurements with optical low coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 78–84 (1997).

Li, X.

M. Brezinski, K. Saunders, C. Jesser, X. Li, J. Fujimoto, “Index matching to improve OCT imaging through blood,” Circulation 103, 1999–2003 (2001).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, H.

H. Liu, B. Beauvoit, M. Kimura, B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).
[CrossRef] [PubMed]

B. Chance, H. Liu, T. Kitai, Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351–362 (1995).
[CrossRef] [PubMed]

Maier, J. S.

Makarevich, S. A.

A. P. Ivanov, S. A. Makarevich, A. Ya. Khairullina, “Radiation propagation in tissues and liquids with close particle packing,” J. Appl. Spectrosc. (USSR) 47, 1077–1082 (1988).
[CrossRef]

Maksimova, I. L.

I. L. Maksimova, D. A. Zimnyakov, V. V. Tuchin, “Controlling of tissue optical properties. I. Spectral characteristics of eye sclera,” Opt. Spectrosc. 89, 86–95 (2000).
[CrossRef]

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401–417 (1997).
[CrossRef] [PubMed]

V. V. Bakutkin, I. L. Maksimova, P. I. Saprykin, V. V. Tuchin, L. P. Shubochkin, “Light scattering by human eye sclera,” J. Appl. Spectrosc. (USSR) 46, 104–107 (1987).
[CrossRef]

Mavlutov, A. H.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401–417 (1997).
[CrossRef] [PubMed]

Mills, P.

Milner, T.

Mishin, A. A.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401–417 (1997).
[CrossRef] [PubMed]

Mourou, G.

Z. S. Sacks, D. L. Craig, R. M. Kurtz, T. Juhasz, G. Mourou, “Spatially resolved transmission of highly focused beams through the cornea and sclera between 1400 and 1800 nm,” in Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, V. V. Tuchin, ed., Proc. SPIE3726, 522–527 (1998).
[CrossRef]

Mueller, G.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Mueller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Nelson, J. S.

Nikulin, N. K.

V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Y. I. Khanin, D. V. Shabanov, N. D. Gladkova, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, “Coherent optical tomography of microscopic inhomogeneities in biological tissues,” JETP Lett. 61, 158–162 (1995).

Novikov, C. N.

V. L. Voeikov, C. N. Novikov, N. D. Vilenskaya, “Low-level chemiluminescent analysis of nondiluted human blood reveals its dynamic system properties,” J. Biomed. Opt. 4, 54–60 (1999).
[CrossRef] [PubMed]

Orskov, H.

Patterson, M. S.

Patwari, P.

P. Patwari, N. J. Weissman, S. A. Boppart, C. A. Jesser, d. Stamper, J. G. Fujimoto, M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high frequency ultrasound,” Am. J. Cardiol. 85, 641–644 (2000).
[CrossRef] [PubMed]

Petrova, G. A.

V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Y. I. Khanin, D. V. Shabanov, N. D. Gladkova, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, “Coherent optical tomography of microscopic inhomogeneities in biological tissues,” JETP Lett. 61, 158–162 (1995).

Pitris, C.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intraarterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

Pochinko, V. V.

V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Y. I. Khanin, D. V. Shabanov, N. D. Gladkova, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, “Coherent optical tomography of microscopic inhomogeneities in biological tissues,” JETP Lett. 61, 158–162 (1995).

Pravdenko, K. I.

V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Y. I. Khanin, D. V. Shabanov, N. D. Gladkova, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, “Coherent optical tomography of microscopic inhomogeneities in biological tissues,” JETP Lett. 61, 158–162 (1995).

Priezzhev, A. V.

A. V. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, I. V. Sirko, “Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique,” J. Biomed. Opt. 4, 76–84 (1999).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Roggan, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Mueller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Ryaboshapka, O. M.

A. V. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, I. V. Sirko, “Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique,” J. Biomed. Opt. 4, 76–84 (1999).
[CrossRef] [PubMed]

Rylander, H. G.

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, A. J. Welch, “Use of an agent to reduce scattering in skin,” Laser Surg. Med. 24, 138–141 (1999).
[CrossRef]

Sacks, Z. S.

Z. S. Sacks, D. L. Craig, R. M. Kurtz, T. Juhasz, G. Mourou, “Spatially resolved transmission of highly focused beams through the cornea and sclera between 1400 and 1800 nm,” in Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, V. V. Tuchin, ed., Proc. SPIE3726, 522–527 (1998).
[CrossRef]

Sandahl-Christiansen, J.

Saprykin, P. I.

V. V. Bakutkin, I. L. Maksimova, P. I. Saprykin, V. V. Tuchin, L. P. Shubochkin, “Light scattering by human eye sclera,” J. Appl. Spectrosc. (USSR) 46, 104–107 (1987).
[CrossRef]

Saunders, K.

M. Brezinski, K. Saunders, C. Jesser, X. Li, J. Fujimoto, “Index matching to improve OCT imaging through blood,” Circulation 103, 1999–2003 (2001).
[CrossRef] [PubMed]

Schmelzeisen-Redeker, G.

Schmitt, J. M.

J. M. Schmitt, A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
[CrossRef]

J. M. Schmitt, A. Knüttel, A. Gandjbakhche, “Optical characterization of dense tissues using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE1889, 197–211 (1993).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sergeev, A. M.

V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Y. I. Khanin, D. V. Shabanov, N. D. Gladkova, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, “Coherent optical tomography of microscopic inhomogeneities in biological tissues,” JETP Lett. 61, 158–162 (1995).

Shabanov, D. V.

V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Y. I. Khanin, D. V. Shabanov, N. D. Gladkova, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, “Coherent optical tomography of microscopic inhomogeneities in biological tissues,” JETP Lett. 61, 158–162 (1995).

Shchyogolev, S. Yu.

S. Yu. Shchyogolev, “Inverse problems of spectroturbidimetry of biological disperse systems: an overview,” J. Biomed. Opt. 4, 490–503 (1999).
[CrossRef] [PubMed]

Shubochkin, L. P.

V. V. Bakutkin, I. L. Maksimova, P. I. Saprykin, V. V. Tuchin, L. P. Shubochkin, “Light scattering by human eye sclera,” J. Appl. Spectrosc. (USSR) 46, 104–107 (1987).
[CrossRef]

Shvartsman, L. D.

I. Fine, B. Fikhte, L. D. Shvartsman, “RBC aggregation assisted light transmission through blood and occlusion oximetry,” in Controlling Tissue Optical Properties: Applications in Clinical Study, V. V. Tuchin, ed., Proc. SPIE4162, 130–139 (2000).
[CrossRef]

Sinichkin, Yu. P.

A. N. Bashkatov, E. A. Genina, I. V. Korovina, V. I. Kochubey, Yu. P. Sinichkin, V. V. Tuchin, “In vivo and in vitro study of control of rat skin optical properties by action of osmotical liquid,” in Biomedical Photonics and Optoelectronic Imaging, H. Liu, Q. Luo, eds., Proc. SPIE4224, 300–311 (2000).

Sirko, I. V.

A. V. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, I. V. Sirko, “Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique,” J. Biomed. Opt. 4, 76–84 (1999).
[CrossRef] [PubMed]

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News (Aug.1997), pp. 41–47, 65.

Snabre, P.

Southern, J. F.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

Stamper, d.

P. Patwari, N. J. Weissman, S. A. Boppart, C. A. Jesser, d. Stamper, J. G. Fujimoto, M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high frequency ultrasound,” Am. J. Cardiol. 85, 641–644 (2000).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intraarterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

Tuchin, V. V.

R. K. Wang, V. V. Tuchin, X. Xu, J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18, 948–953 (2001).
[CrossRef]

I. L. Maksimova, D. A. Zimnyakov, V. V. Tuchin, “Controlling of tissue optical properties. I. Spectral characteristics of eye sclera,” Opt. Spectrosc. 89, 86–95 (2000).
[CrossRef]

V. V. Tuchin, “Coherent optical techniques for the analysis of tissue structure and dynamics,” J. Biomed. Opt. 4, 106–124 (1999).
[CrossRef] [PubMed]

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401–417 (1997).
[CrossRef] [PubMed]

V. V. Bakutkin, I. L. Maksimova, P. I. Saprykin, V. V. Tuchin, L. P. Shubochkin, “Light scattering by human eye sclera,” J. Appl. Spectrosc. (USSR) 46, 104–107 (1987).
[CrossRef]

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Vol. TT38 of SPIE Tutorial Texts in Optical Engineering (SPIE, Bellingham, Wash., 2000).

V. V. Tuchin, “Controlling of tissue optical properties,” in Optical Technologies in Biophysics and Medicine, V. V. Tuchin, D. A. Zimnyakov, A. B. Pravdin, eds., Proc. SPIE4001, 30–53 (2000).
[CrossRef]

V. V. Tuchin, “Immersion effects in tissues,” in Controlling Tissue Optical Properties: Applications in Clinical Study, V. V. Tuchin, ed., Proc. SPIE4162, 1–12 (2000).
[CrossRef]

A. N. Bashkatov, E. A. Genina, I. V. Korovina, V. I. Kochubey, Yu. P. Sinichkin, V. V. Tuchin, “In vivo and in vitro study of control of rat skin optical properties by action of osmotical liquid,” in Biomedical Photonics and Optoelectronic Imaging, H. Liu, Q. Luo, eds., Proc. SPIE4224, 300–311 (2000).

V. V. Tuchin, X. Xu, R. K. Wang, J. B. Elder, “Whole blood and RBC sedimentation and aggregation study using OCT,” in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev, G. L. Cote, eds., Proc. SPIE4263, 143–149 (2001).
[CrossRef]

X. Xu, V. V. Tuchin, R. K. Wang, J. B. Elder, “Immersion technique as a tool for in depth OCT imaging through the blood and body’s interior tissues,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V, V. V. Tuchin, J. A. Izat, J. G. Fujimoto, eds., Proc. SPIE4251, 89–96 (2001).
[CrossRef]

Vargas, G.

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, A. J. Welch, “Use of an agent to reduce scattering in skin,” Laser Surg. Med. 24, 138–141 (1999).
[CrossRef]

Vilenskaya, N. D.

V. L. Voeikov, C. N. Novikov, N. D. Vilenskaya, “Low-level chemiluminescent analysis of nondiluted human blood reveals its dynamic system properties,” J. Biomed. Opt. 4, 54–60 (1999).
[CrossRef] [PubMed]

Voeikov, V. L.

V. L. Voeikov, C. N. Novikov, N. D. Vilenskaya, “Low-level chemiluminescent analysis of nondiluted human blood reveals its dynamic system properties,” J. Biomed. Opt. 4, 54–60 (1999).
[CrossRef] [PubMed]

V. L. Voeikov, Yu. S. Bulargina, E. V. Buravleva, S. E. Kondakov, “Non-equilibrium and coherent properties of whole blood revealed by analysis of its sedimentation behavior,” in Biophotonics and Coherent Systems, Proceedings of the 2nd Alexander Gurwitsch Conference and Additional Contributions, L. Beloussov, F.-A. Popp, V. Voeikov, R. van Wijk, eds., Vol. 6 of Biophotonics and Coherent Systems (Moscow U. Press, Moscow, 2000), pp. 75–93.

Walker, S. A.

Wang, R. K.

R. K. Wang, V. V. Tuchin, X. Xu, J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18, 948–953 (2001).
[CrossRef]

R. K. Wang, “Modelling optical properties of soft tissue by fractal distribution of scatters,” J. Mod. Opt. 47, 103–120 (2000).

R. K. Wang, “Resolution improved optical coherence-gated tomography for imaging through biological tissues,” J. Mod. Opt. 46, 1905–1912 (1999).

X. Xu, V. V. Tuchin, R. K. Wang, J. B. Elder, “Immersion technique as a tool for in depth OCT imaging through the blood and body’s interior tissues,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V, V. V. Tuchin, J. A. Izat, J. G. Fujimoto, eds., Proc. SPIE4251, 89–96 (2001).
[CrossRef]

V. V. Tuchin, X. Xu, R. K. Wang, J. B. Elder, “Whole blood and RBC sedimentation and aggregation study using OCT,” in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev, G. L. Cote, eds., Proc. SPIE4263, 143–149 (2001).
[CrossRef]

Wang, X.

Weissman, N. J.

P. Patwari, N. J. Weissman, S. A. Boppart, C. A. Jesser, d. Stamper, J. G. Fujimoto, M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high frequency ultrasound,” Am. J. Cardiol. 85, 641–644 (2000).
[CrossRef] [PubMed]

Welch, A. J.

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, A. J. Welch, “Use of an agent to reduce scattering in skin,” Laser Surg. Med. 24, 138–141 (1999).
[CrossRef]

Welzel, J.

E. Lankenau, J. Welzel, R. Birngruber, R. Engelhardt, “In vivo tissue measurements with optical low coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 78–84 (1997).

Xu, X.

R. K. Wang, V. V. Tuchin, X. Xu, J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18, 948–953 (2001).
[CrossRef]

V. V. Tuchin, X. Xu, R. K. Wang, J. B. Elder, “Whole blood and RBC sedimentation and aggregation study using OCT,” in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev, G. L. Cote, eds., Proc. SPIE4263, 143–149 (2001).
[CrossRef]

X. Xu, V. V. Tuchin, R. K. Wang, J. B. Elder, “Immersion technique as a tool for in depth OCT imaging through the blood and body’s interior tissues,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V, V. V. Tuchin, J. A. Izat, J. G. Fujimoto, eds., Proc. SPIE4251, 89–96 (2001).
[CrossRef]

Yazdanfar, S.

Zhang, Y.

B. Chance, H. Liu, T. Kitai, Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351–362 (1995).
[CrossRef] [PubMed]

Zimnyakov, D. A.

I. L. Maksimova, D. A. Zimnyakov, V. V. Tuchin, “Controlling of tissue optical properties. I. Spectral characteristics of eye sclera,” Opt. Spectrosc. 89, 86–95 (2000).
[CrossRef]

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401–417 (1997).
[CrossRef] [PubMed]

Am. J. Cardiol. (1)

P. Patwari, N. J. Weissman, S. A. Boppart, C. A. Jesser, d. Stamper, J. G. Fujimoto, M. E. Brezinski, “Assessment of coronary plaque with optical coherence tomography and high frequency ultrasound,” Am. J. Cardiol. 85, 641–644 (2000).
[CrossRef] [PubMed]

Anal. Biochem. (1)

B. Chance, H. Liu, T. Kitai, Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells, and tissues,” Anal. Biochem. 227, 351–362 (1995).
[CrossRef] [PubMed]

Appl. Opt. (2)

Circulation (2)

M. Brezinski, K. Saunders, C. Jesser, X. Li, J. Fujimoto, “Index matching to improve OCT imaging through blood,” Circulation 103, 1999–2003 (2001).
[CrossRef] [PubMed]

M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology,” Circulation 93, 1206–1213 (1996).
[CrossRef] [PubMed]

Heart (1)

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intraarterial imaging with optical coherence tomography,” Heart 82, 128–133 (1999).
[PubMed]

J. Appl. Spectrosc. (USSR) (2)

V. V. Bakutkin, I. L. Maksimova, P. I. Saprykin, V. V. Tuchin, L. P. Shubochkin, “Light scattering by human eye sclera,” J. Appl. Spectrosc. (USSR) 46, 104–107 (1987).
[CrossRef]

A. P. Ivanov, S. A. Makarevich, A. Ya. Khairullina, “Radiation propagation in tissues and liquids with close particle packing,” J. Appl. Spectrosc. (USSR) 47, 1077–1082 (1988).
[CrossRef]

J. Biomed. Opt. (10)

H. Liu, B. Beauvoit, M. Kimura, B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).
[CrossRef] [PubMed]

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401–417 (1997).
[CrossRef] [PubMed]

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef] [PubMed]

V. V. Tuchin, “Coherent optical techniques for the analysis of tissue structure and dynamics,” J. Biomed. Opt. 4, 106–124 (1999).
[CrossRef] [PubMed]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Mueller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

S. Yu. Shchyogolev, “Inverse problems of spectroturbidimetry of biological disperse systems: an overview,” J. Biomed. Opt. 4, 490–503 (1999).
[CrossRef] [PubMed]

A. V. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, I. V. Sirko, “Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique,” J. Biomed. Opt. 4, 76–84 (1999).
[CrossRef] [PubMed]

V. L. Voeikov, C. N. Novikov, N. D. Vilenskaya, “Low-level chemiluminescent analysis of nondiluted human blood reveals its dynamic system properties,” J. Biomed. Opt. 4, 54–60 (1999).
[CrossRef] [PubMed]

A. Knuettel, M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt. 5, 83–92 (2000).
[CrossRef]

R. P. Hemenger, “Refractive index changes in the ocular lens result from increased light scatter,” J. Biomed. Opt. 1, 268–272 (1996).
[CrossRef] [PubMed]

J. Mod. Opt. (2)

R. K. Wang, “Modelling optical properties of soft tissue by fractal distribution of scatters,” J. Mod. Opt. 47, 103–120 (2000).

R. K. Wang, “Resolution improved optical coherence-gated tomography for imaging through biological tissues,” J. Mod. Opt. 46, 1905–1912 (1999).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov, K. I. Pravdenko, A. M. Sergeev, F. I. Feldshtein, Y. I. Khanin, D. V. Shabanov, N. D. Gladkova, N. K. Nikulin, G. A. Petrova, V. V. Pochinko, “Coherent optical tomography of microscopic inhomogeneities in biological tissues,” JETP Lett. 61, 158–162 (1995).

Laser Surg. Med. (1)

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, A. J. Welch, “Use of an agent to reduce scattering in skin,” Laser Surg. Med. 24, 138–141 (1999).
[CrossRef]

Opt. Lett. (4)

Opt. Photon. News (1)

J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News (Aug.1997), pp. 41–47, 65.

Opt. Spectrosc. (1)

I. L. Maksimova, D. A. Zimnyakov, V. V. Tuchin, “Controlling of tissue optical properties. I. Spectral characteristics of eye sclera,” Opt. Spectrosc. 89, 86–95 (2000).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (12)

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Vol. TT38 of SPIE Tutorial Texts in Optical Engineering (SPIE, Bellingham, Wash., 2000).

E. Lankenau, J. Welzel, R. Birngruber, R. Engelhardt, “In vivo tissue measurements with optical low coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 78–84 (1997).

V. V. Tuchin, X. Xu, R. K. Wang, J. B. Elder, “Whole blood and RBC sedimentation and aggregation study using OCT,” in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev, G. L. Cote, eds., Proc. SPIE4263, 143–149 (2001).
[CrossRef]

X. Xu, V. V. Tuchin, R. K. Wang, J. B. Elder, “Immersion technique as a tool for in depth OCT imaging through the blood and body’s interior tissues,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V, V. V. Tuchin, J. A. Izat, J. G. Fujimoto, eds., Proc. SPIE4251, 89–96 (2001).
[CrossRef]

F. A. Duck, Physical Properties of Tissue. A Comprehensive Reference Book (Academic, London, 1990).

J. M. Schmitt, A. Knüttel, A. Gandjbakhche, “Optical characterization of dense tissues using low-coherence interferometry,” in Holography, Interferometry, and Optical Pattern Recognition in Biomedicine III, H. Podbielska, ed., Proc. SPIE1889, 197–211 (1993).
[CrossRef]

Z. S. Sacks, D. L. Craig, R. M. Kurtz, T. Juhasz, G. Mourou, “Spatially resolved transmission of highly focused beams through the cornea and sclera between 1400 and 1800 nm,” in Light Scattering Technologies for Mechanics, Biomedicine, and Material Science, V. V. Tuchin, ed., Proc. SPIE3726, 522–527 (1998).
[CrossRef]

A. N. Bashkatov, E. A. Genina, I. V. Korovina, V. I. Kochubey, Yu. P. Sinichkin, V. V. Tuchin, “In vivo and in vitro study of control of rat skin optical properties by action of osmotical liquid,” in Biomedical Photonics and Optoelectronic Imaging, H. Liu, Q. Luo, eds., Proc. SPIE4224, 300–311 (2000).

V. V. Tuchin, “Controlling of tissue optical properties,” in Optical Technologies in Biophysics and Medicine, V. V. Tuchin, D. A. Zimnyakov, A. B. Pravdin, eds., Proc. SPIE4001, 30–53 (2000).
[CrossRef]

V. V. Tuchin, “Immersion effects in tissues,” in Controlling Tissue Optical Properties: Applications in Clinical Study, V. V. Tuchin, ed., Proc. SPIE4162, 1–12 (2000).
[CrossRef]

I. Fine, B. Fikhte, L. D. Shvartsman, “RBC aggregation assisted light transmission through blood and occlusion oximetry,” in Controlling Tissue Optical Properties: Applications in Clinical Study, V. V. Tuchin, ed., Proc. SPIE4162, 130–139 (2000).
[CrossRef]

V. L. Voeikov, Yu. S. Bulargina, E. V. Buravleva, S. E. Kondakov, “Non-equilibrium and coherent properties of whole blood revealed by analysis of its sedimentation behavior,” in Biophotonics and Coherent Systems, Proceedings of the 2nd Alexander Gurwitsch Conference and Additional Contributions, L. Beloussov, F.-A. Popp, V. Voeikov, R. van Wijk, eds., Vol. 6 of Biophotonics and Coherent Systems (Moscow U. Press, Moscow, 2000), pp. 75–93.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup: CLs, colimating lens; D1, D2, detectors; FC2, FC3, fiber couplers; PCs, polarization controller; OL, objective lens.

Fig. 2
Fig. 2

Dynamic in-depth images of the blood of a 35-year-old woman that has been slightly diluted with (a) saline (13%), (b) trazograph 76% (13%), (c) dextran 1 (1.3%), and (d) dextran 2 (13%) (Table 1, sample group I). Upper bright line, reflectance on the vessel’s glass–blood interface; middle (time-dependent) bright line, reflectance on the RBC–blood plasma boundary; lower bright line, reflectance of the metal surface at the bottom of the vessel.

Fig. 3
Fig. 3

Dynamic in-depth images of the blood of a 35-year-old woman: (a) whole blood and blood diluted with (b) saline (13%) and dextrans (13%) (c) A, (d) B, and (e) C (Table 1, sample group I).

Fig. 4
Fig. 4

In-depth reflectance profiles measured for slightly diluted whole blood (a), (d), (g) at the beginning of the sedimentation process (b), (e), (h) at 5 min; and (c), (f), (i) at 10 min for (a)–(c) saline (13%), (d)–(f) dextran A (13%), and (g)–(i) dextran C (13%) (Table 1, sample group I). The first peak is induced by reflectance from the glass–blood interface; the second peak, which is broad and has some structures, is caused by reflectance on the RBC–plasma interface; and the third peak is caused by the metal reflector.

Fig. 5
Fig. 5

Blood-smear microscopy: blood with low-MW dextran A (MW, 10,500) (a) immediately after the application of an agent for which there are no aggregates and (b) 15 min after application of an agent (some small aggregates are seen). Blood with high-MW dextran C (MW, 473,000) (c) immediately after application of agent (rouleaux are clearly seen) and (d) 15 min after application of the agent (the network of aggregates is seen).

Fig. 6
Fig. 6

Dynamic changes in reflectance from the metal surface in blood caused by addition of agents (saline and dextrans A, B, and C): (a) mildly-diluted blood (see Table 1, sample group II), (b) highly diluted blood (Table 1, sample group III).

Fig. 7
Fig. 7

Time distributions of sedimentation rates calculated for the OCT dynamic images in Fig. 3 for the blood of a 35-year-old woman for (a) whole blood (mean velocity, 1.17 mm/h) and for blood diluted with (b) saline (13%; 2.63 mm/h) and 13% dextrans (c) A (0.67 mm/h), (d) B (1.57 mm/h), and (e) C (3.29 mm/h); (Table 1, sample series I).

Tables (4)

Tables Icon

Table 1 Three Types of Blood Sample under Studya

Tables Icon

Table 2 Optical Properties of the Highly Diluted Blood Samplesa

Tables Icon

Table 3 Optical Properties of the Highly Diluted Blood Samplesa

Tables Icon

Table 4 RBC Parameters Found from Osmolarity of the Blood Solutiona

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

μs=3.28πa2ρ2πa/λ0.37m-12.09,
nbp=cwnw+1-cwnp,
nec=nw+βc,
Rz=I0αzexp-2μtz,
μt=12ΔZlnRZ1RZ2,
ΔT=Ragent-RsalineRsaline×100%,
V=Hn+1-Hn/tn+1-tn,
Hn=iN hiΔUiiN ΔUi,
Δzopt=ngΔz.
Δzoptn¯Δz.
Escr=αE1r+α2E2r+,
α=n-n0/2πn0.
expikz+L Δmn0,
mn0+Δm=n¯+n2¯-n¯2n¯ Qλ/l,
n¯=n01+nn0-1VsV0,
mT=L-HtL n¯+HtL m,

Metrics