Abstract

A geometric theory of a grazing-incidence varied-line-spacing plane-grating monochromator system whose scanning is made by a simple grating rotation about the grating normal has been developed for designing Monk–Gillieson monochromators capable of covering an energy range of 0.6–2.5 keV. Analytic expressions are given for the grating equations, focal conditions, dispersion, spectral image shape, and optimization of groove parameters. On the basis of the theory, two monochromator systems have been designed: system I for moderate resolution and system II for relatively high resolution. The validity of the analytic formulas and the expected performance of the designed systems have been evaluated by means of ray tracing. The results show that the analytic formulas are sufficiently accurate for practical applications and that systems I and II would provide resolving power of approximately 1450–600 and 7500–2000, respectively, in the wavelength region of 0.5–2.0 nm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wong, G. N. George, I. J. Pickering, Z. U. Rek, M. Rowen, T. Tanaka, G. H. Via, B. DeVries, D. E. W. Vaughan, G. E. Brown, “New opportunities in XAFS investigation in the 1–2-keV region,” Solid State Commun. 92, 559–562 (1994).
    [CrossRef]
  2. T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
    [CrossRef]
  3. A. D. Smith, B. C. Cowie, G. Sankar, J. M. Thomas, “Use of YB66 as monochromator crystals for soft-energy EXAFS,” J. Synchrotron Radiat. 5, 716–718 (1998).
    [CrossRef]
  4. E. Ishiguro, H. Maezawa, M. Sakurai, M. Yanagihara, M. Watanabe, M. Koeda, T. Nagano, K. Sano, Y. Akune, K. Tanino, “Test of holographic gratings for high-power synchrotron radiation,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 592–603 (1992).
    [CrossRef]
  5. W. Werner, “The geometric optical aberration theory of diffraction gratings,” Appl. Opt. 6, 1691–1699 (1967).
    [CrossRef] [PubMed]
  6. W. Werner, “Imaging properties of diffraction gratings,” Ph.D. dissertation (Technische Hogeschool Delft, Delft, The Netherlands, 1970).
  7. C. H. F. Velzel, “A general theory of the aberrations of diffraction gratings and grating like optical instruments,” J. Opt. Soc. Am. 66, 346–353 (1976).
    [CrossRef]
  8. M. Nevière, D. Maystre, W. R. Hunter, “On the use of classical and conical diffraction mountings for XUV gratings,” J. Opt. Soc. Am. 68, 1106–1113 (1978).
    [CrossRef]
  9. P. Vincent, M. Nevière, D. Maystre, “X-ray gratings: the GMS mount,” Appl. Opt. 18, 1780–1783 (1979).
    [CrossRef] [PubMed]
  10. W. Werner, H. Visser, “X-ray monochromator designs based on extreme off-plane grating mountings,” Appl. Opt. 20, 487–492 (1981).
    [CrossRef] [PubMed]
  11. M. C. Hettrick, “Surface normal rotation: a new technique for grazing-incidence monochromators,” Appl. Opt. 31, 7174–7178 (1992).
    [CrossRef] [PubMed]
  12. M. C. Hettrick, “Grating monochromators and spectrometers based on surface normal rotation,” U.S. patent5,274,435 (28Dec.1993).
  13. G. S. Monk, “A mounting for the plane grating,” J. Opt. Soc. Am. 17, 358–364 (1928).
    [CrossRef]
  14. A. H. C. P. Gillieson, “A new spectrographic diffraction mounting,” J. Sci. Instrum. 26, 335–339 (1949).
    [CrossRef]
  15. T. Namioka, M. Seya, “Optical properties of a system consisting of a mirror and a grating,” Appl. Opt. 9, 459–464 (1970).
    [CrossRef] [PubMed]
  16. T. Kaneko, T. Namioka, M. Seya, “Monk–Gillieson monochromator,” Appl. Opt. 10, 367–381 (1971).
    [CrossRef] [PubMed]
  17. M. Koike, R. Beguiristain, J. H. Underwood, T. Namioka, “A new optical design method and its application to an extreme ultraviolet varied line spacing plane grating monochromator,” Nucl. Instrum. Methods Phys. Rev. A 347, 273–277 (1994).
    [CrossRef]
  18. M. Koike, T. Namioka, “Optimization and evaluation of varied line spacing plane grating monochromators for third-generation synchrotron radiation sources,” J. Electron Spectrosc. Relat. Phenom. 80, 303–308 (1996).
    [CrossRef]
  19. T. Namioka, M. Koike, D. Content, “Geometric theory of the ellipsoidal grating,” Appl. Opt. 33, 7261–7274 (1994).
    [CrossRef] [PubMed]
  20. T. Namioka, M. Koike, “Aspheric wave-front recording optics for holographic gratings,” Appl. Opt. 34, 2180–2186 (1995).
    [CrossRef] [PubMed]
  21. H. Iwasaki, Y. Nakayama, K. Ozutsumi, Y. Yamamoto, Y. Tokunaga, H. Saisho, T. Matsubara, S. Ikeda, “Compact superconducting ring at Ritsumeikan University,” J. Synchrotron Radiat. 5, 1162–1165 (1998).
    [CrossRef]
  22. M. Koike, T. Namioka, “Plane gratings for high-resolution grazing-incidence monochromators: holographic grating versus mechanically ruled varied-line-spacing grating,” Appl. Opt. 36, 6308–6318 (1997).
    [CrossRef]

1998 (3)

T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
[CrossRef]

A. D. Smith, B. C. Cowie, G. Sankar, J. M. Thomas, “Use of YB66 as monochromator crystals for soft-energy EXAFS,” J. Synchrotron Radiat. 5, 716–718 (1998).
[CrossRef]

H. Iwasaki, Y. Nakayama, K. Ozutsumi, Y. Yamamoto, Y. Tokunaga, H. Saisho, T. Matsubara, S. Ikeda, “Compact superconducting ring at Ritsumeikan University,” J. Synchrotron Radiat. 5, 1162–1165 (1998).
[CrossRef]

1997 (1)

1996 (1)

M. Koike, T. Namioka, “Optimization and evaluation of varied line spacing plane grating monochromators for third-generation synchrotron radiation sources,” J. Electron Spectrosc. Relat. Phenom. 80, 303–308 (1996).
[CrossRef]

1995 (1)

1994 (3)

M. Koike, R. Beguiristain, J. H. Underwood, T. Namioka, “A new optical design method and its application to an extreme ultraviolet varied line spacing plane grating monochromator,” Nucl. Instrum. Methods Phys. Rev. A 347, 273–277 (1994).
[CrossRef]

T. Namioka, M. Koike, D. Content, “Geometric theory of the ellipsoidal grating,” Appl. Opt. 33, 7261–7274 (1994).
[CrossRef] [PubMed]

J. Wong, G. N. George, I. J. Pickering, Z. U. Rek, M. Rowen, T. Tanaka, G. H. Via, B. DeVries, D. E. W. Vaughan, G. E. Brown, “New opportunities in XAFS investigation in the 1–2-keV region,” Solid State Commun. 92, 559–562 (1994).
[CrossRef]

1992 (1)

1981 (1)

1979 (1)

1978 (1)

1976 (1)

1971 (1)

1970 (1)

1967 (1)

1949 (1)

A. H. C. P. Gillieson, “A new spectrographic diffraction mounting,” J. Sci. Instrum. 26, 335–339 (1949).
[CrossRef]

1928 (1)

Akune, Y.

E. Ishiguro, H. Maezawa, M. Sakurai, M. Yanagihara, M. Watanabe, M. Koeda, T. Nagano, K. Sano, Y. Akune, K. Tanino, “Test of holographic gratings for high-power synchrotron radiation,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 592–603 (1992).
[CrossRef]

Aritani, H.

T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
[CrossRef]

Beguiristain, R.

M. Koike, R. Beguiristain, J. H. Underwood, T. Namioka, “A new optical design method and its application to an extreme ultraviolet varied line spacing plane grating monochromator,” Nucl. Instrum. Methods Phys. Rev. A 347, 273–277 (1994).
[CrossRef]

Brown, G. E.

J. Wong, G. N. George, I. J. Pickering, Z. U. Rek, M. Rowen, T. Tanaka, G. H. Via, B. DeVries, D. E. W. Vaughan, G. E. Brown, “New opportunities in XAFS investigation in the 1–2-keV region,” Solid State Commun. 92, 559–562 (1994).
[CrossRef]

Content, D.

Cowie, B. C.

A. D. Smith, B. C. Cowie, G. Sankar, J. M. Thomas, “Use of YB66 as monochromator crystals for soft-energy EXAFS,” J. Synchrotron Radiat. 5, 716–718 (1998).
[CrossRef]

DeVries, B.

J. Wong, G. N. George, I. J. Pickering, Z. U. Rek, M. Rowen, T. Tanaka, G. H. Via, B. DeVries, D. E. W. Vaughan, G. E. Brown, “New opportunities in XAFS investigation in the 1–2-keV region,” Solid State Commun. 92, 559–562 (1994).
[CrossRef]

George, G. N.

J. Wong, G. N. George, I. J. Pickering, Z. U. Rek, M. Rowen, T. Tanaka, G. H. Via, B. DeVries, D. E. W. Vaughan, G. E. Brown, “New opportunities in XAFS investigation in the 1–2-keV region,” Solid State Commun. 92, 559–562 (1994).
[CrossRef]

Gillieson, A. H. C. P.

A. H. C. P. Gillieson, “A new spectrographic diffraction mounting,” J. Sci. Instrum. 26, 335–339 (1949).
[CrossRef]

Hettrick, M. C.

M. C. Hettrick, “Surface normal rotation: a new technique for grazing-incidence monochromators,” Appl. Opt. 31, 7174–7178 (1992).
[CrossRef] [PubMed]

M. C. Hettrick, “Grating monochromators and spectrometers based on surface normal rotation,” U.S. patent5,274,435 (28Dec.1993).

Hunter, W. R.

Ikeda, S.

H. Iwasaki, Y. Nakayama, K. Ozutsumi, Y. Yamamoto, Y. Tokunaga, H. Saisho, T. Matsubara, S. Ikeda, “Compact superconducting ring at Ritsumeikan University,” J. Synchrotron Radiat. 5, 1162–1165 (1998).
[CrossRef]

Ishiguro, E.

E. Ishiguro, H. Maezawa, M. Sakurai, M. Yanagihara, M. Watanabe, M. Koeda, T. Nagano, K. Sano, Y. Akune, K. Tanino, “Test of holographic gratings for high-power synchrotron radiation,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 592–603 (1992).
[CrossRef]

Iwasaki, H.

H. Iwasaki, Y. Nakayama, K. Ozutsumi, Y. Yamamoto, Y. Tokunaga, H. Saisho, T. Matsubara, S. Ikeda, “Compact superconducting ring at Ritsumeikan University,” J. Synchrotron Radiat. 5, 1162–1165 (1998).
[CrossRef]

Kaneko, T.

Kimura, S.

T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
[CrossRef]

Kinoshita, T.

T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
[CrossRef]

Kitajima, Y.

T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
[CrossRef]

Koeda, M.

E. Ishiguro, H. Maezawa, M. Sakurai, M. Yanagihara, M. Watanabe, M. Koeda, T. Nagano, K. Sano, Y. Akune, K. Tanino, “Test of holographic gratings for high-power synchrotron radiation,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 592–603 (1992).
[CrossRef]

Koike, M.

M. Koike, T. Namioka, “Plane gratings for high-resolution grazing-incidence monochromators: holographic grating versus mechanically ruled varied-line-spacing grating,” Appl. Opt. 36, 6308–6318 (1997).
[CrossRef]

M. Koike, T. Namioka, “Optimization and evaluation of varied line spacing plane grating monochromators for third-generation synchrotron radiation sources,” J. Electron Spectrosc. Relat. Phenom. 80, 303–308 (1996).
[CrossRef]

T. Namioka, M. Koike, “Aspheric wave-front recording optics for holographic gratings,” Appl. Opt. 34, 2180–2186 (1995).
[CrossRef] [PubMed]

T. Namioka, M. Koike, D. Content, “Geometric theory of the ellipsoidal grating,” Appl. Opt. 33, 7261–7274 (1994).
[CrossRef] [PubMed]

M. Koike, R. Beguiristain, J. H. Underwood, T. Namioka, “A new optical design method and its application to an extreme ultraviolet varied line spacing plane grating monochromator,” Nucl. Instrum. Methods Phys. Rev. A 347, 273–277 (1994).
[CrossRef]

Maezawa, H.

E. Ishiguro, H. Maezawa, M. Sakurai, M. Yanagihara, M. Watanabe, M. Koeda, T. Nagano, K. Sano, Y. Akune, K. Tanino, “Test of holographic gratings for high-power synchrotron radiation,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 592–603 (1992).
[CrossRef]

Matsubara, T.

H. Iwasaki, Y. Nakayama, K. Ozutsumi, Y. Yamamoto, Y. Tokunaga, H. Saisho, T. Matsubara, S. Ikeda, “Compact superconducting ring at Ritsumeikan University,” J. Synchrotron Radiat. 5, 1162–1165 (1998).
[CrossRef]

Matsukawa, T.

T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
[CrossRef]

Matsuo, S.

T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
[CrossRef]

Maystre, D.

Monk, G. S.

Nagano, T.

E. Ishiguro, H. Maezawa, M. Sakurai, M. Yanagihara, M. Watanabe, M. Koeda, T. Nagano, K. Sano, Y. Akune, K. Tanino, “Test of holographic gratings for high-power synchrotron radiation,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 592–603 (1992).
[CrossRef]

Nakayama, Y.

H. Iwasaki, Y. Nakayama, K. Ozutsumi, Y. Yamamoto, Y. Tokunaga, H. Saisho, T. Matsubara, S. Ikeda, “Compact superconducting ring at Ritsumeikan University,” J. Synchrotron Radiat. 5, 1162–1165 (1998).
[CrossRef]

Namioka, T.

Nath, K. G.

T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
[CrossRef]

Nevière, M.

Ozutsumi, K.

H. Iwasaki, Y. Nakayama, K. Ozutsumi, Y. Yamamoto, Y. Tokunaga, H. Saisho, T. Matsubara, S. Ikeda, “Compact superconducting ring at Ritsumeikan University,” J. Synchrotron Radiat. 5, 1162–1165 (1998).
[CrossRef]

Pickering, I. J.

J. Wong, G. N. George, I. J. Pickering, Z. U. Rek, M. Rowen, T. Tanaka, G. H. Via, B. DeVries, D. E. W. Vaughan, G. E. Brown, “New opportunities in XAFS investigation in the 1–2-keV region,” Solid State Commun. 92, 559–562 (1994).
[CrossRef]

Rek, Z. U.

J. Wong, G. N. George, I. J. Pickering, Z. U. Rek, M. Rowen, T. Tanaka, G. H. Via, B. DeVries, D. E. W. Vaughan, G. E. Brown, “New opportunities in XAFS investigation in the 1–2-keV region,” Solid State Commun. 92, 559–562 (1994).
[CrossRef]

Rowen, M.

J. Wong, G. N. George, I. J. Pickering, Z. U. Rek, M. Rowen, T. Tanaka, G. H. Via, B. DeVries, D. E. W. Vaughan, G. E. Brown, “New opportunities in XAFS investigation in the 1–2-keV region,” Solid State Commun. 92, 559–562 (1994).
[CrossRef]

Saisho, H.

H. Iwasaki, Y. Nakayama, K. Ozutsumi, Y. Yamamoto, Y. Tokunaga, H. Saisho, T. Matsubara, S. Ikeda, “Compact superconducting ring at Ritsumeikan University,” J. Synchrotron Radiat. 5, 1162–1165 (1998).
[CrossRef]

Sakurai, M.

E. Ishiguro, H. Maezawa, M. Sakurai, M. Yanagihara, M. Watanabe, M. Koeda, T. Nagano, K. Sano, Y. Akune, K. Tanino, “Test of holographic gratings for high-power synchrotron radiation,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 592–603 (1992).
[CrossRef]

Sankar, G.

A. D. Smith, B. C. Cowie, G. Sankar, J. M. Thomas, “Use of YB66 as monochromator crystals for soft-energy EXAFS,” J. Synchrotron Radiat. 5, 716–718 (1998).
[CrossRef]

Sano, K.

E. Ishiguro, H. Maezawa, M. Sakurai, M. Yanagihara, M. Watanabe, M. Koeda, T. Nagano, K. Sano, Y. Akune, K. Tanino, “Test of holographic gratings for high-power synchrotron radiation,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 592–603 (1992).
[CrossRef]

Seya, M.

Smith, A. D.

A. D. Smith, B. C. Cowie, G. Sankar, J. M. Thomas, “Use of YB66 as monochromator crystals for soft-energy EXAFS,” J. Synchrotron Radiat. 5, 716–718 (1998).
[CrossRef]

Takahashi, M.

T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
[CrossRef]

Tanaka, T.

J. Wong, G. N. George, I. J. Pickering, Z. U. Rek, M. Rowen, T. Tanaka, G. H. Via, B. DeVries, D. E. W. Vaughan, G. E. Brown, “New opportunities in XAFS investigation in the 1–2-keV region,” Solid State Commun. 92, 559–562 (1994).
[CrossRef]

Tanaka, Y.

T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
[CrossRef]

Tanino, K.

E. Ishiguro, H. Maezawa, M. Sakurai, M. Yanagihara, M. Watanabe, M. Koeda, T. Nagano, K. Sano, Y. Akune, K. Tanino, “Test of holographic gratings for high-power synchrotron radiation,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 592–603 (1992).
[CrossRef]

Thomas, J. M.

A. D. Smith, B. C. Cowie, G. Sankar, J. M. Thomas, “Use of YB66 as monochromator crystals for soft-energy EXAFS,” J. Synchrotron Radiat. 5, 716–718 (1998).
[CrossRef]

Tokunaga, Y.

H. Iwasaki, Y. Nakayama, K. Ozutsumi, Y. Yamamoto, Y. Tokunaga, H. Saisho, T. Matsubara, S. Ikeda, “Compact superconducting ring at Ritsumeikan University,” J. Synchrotron Radiat. 5, 1162–1165 (1998).
[CrossRef]

Ufuktepe, Y.

T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
[CrossRef]

Underwood, J. H.

M. Koike, R. Beguiristain, J. H. Underwood, T. Namioka, “A new optical design method and its application to an extreme ultraviolet varied line spacing plane grating monochromator,” Nucl. Instrum. Methods Phys. Rev. A 347, 273–277 (1994).
[CrossRef]

Vaughan, D. E. W.

J. Wong, G. N. George, I. J. Pickering, Z. U. Rek, M. Rowen, T. Tanaka, G. H. Via, B. DeVries, D. E. W. Vaughan, G. E. Brown, “New opportunities in XAFS investigation in the 1–2-keV region,” Solid State Commun. 92, 559–562 (1994).
[CrossRef]

Velzel, C. H. F.

Via, G. H.

J. Wong, G. N. George, I. J. Pickering, Z. U. Rek, M. Rowen, T. Tanaka, G. H. Via, B. DeVries, D. E. W. Vaughan, G. E. Brown, “New opportunities in XAFS investigation in the 1–2-keV region,” Solid State Commun. 92, 559–562 (1994).
[CrossRef]

Vincent, P.

Visser, H.

Watanabe, M.

E. Ishiguro, H. Maezawa, M. Sakurai, M. Yanagihara, M. Watanabe, M. Koeda, T. Nagano, K. Sano, Y. Akune, K. Tanino, “Test of holographic gratings for high-power synchrotron radiation,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 592–603 (1992).
[CrossRef]

Werner, W.

Wong, J.

J. Wong, G. N. George, I. J. Pickering, Z. U. Rek, M. Rowen, T. Tanaka, G. H. Via, B. DeVries, D. E. W. Vaughan, G. E. Brown, “New opportunities in XAFS investigation in the 1–2-keV region,” Solid State Commun. 92, 559–562 (1994).
[CrossRef]

Yamamoto, T.

T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
[CrossRef]

Yamamoto, Y.

H. Iwasaki, Y. Nakayama, K. Ozutsumi, Y. Yamamoto, Y. Tokunaga, H. Saisho, T. Matsubara, S. Ikeda, “Compact superconducting ring at Ritsumeikan University,” J. Synchrotron Radiat. 5, 1162–1165 (1998).
[CrossRef]

Yanagihara, M.

E. Ishiguro, H. Maezawa, M. Sakurai, M. Yanagihara, M. Watanabe, M. Koeda, T. Nagano, K. Sano, Y. Akune, K. Tanino, “Test of holographic gratings for high-power synchrotron radiation,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 592–603 (1992).
[CrossRef]

Yoshida, H.

T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
[CrossRef]

Yoshida, T.

T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
[CrossRef]

Appl. Opt. (9)

J. Electron Spectrosc. Relat. Phenom. (1)

M. Koike, T. Namioka, “Optimization and evaluation of varied line spacing plane grating monochromators for third-generation synchrotron radiation sources,” J. Electron Spectrosc. Relat. Phenom. 80, 303–308 (1996).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Sci. Instrum. (1)

A. H. C. P. Gillieson, “A new spectrographic diffraction mounting,” J. Sci. Instrum. 26, 335–339 (1949).
[CrossRef]

J. Synchrotron Radiat. (3)

T. Kinoshita, Y. Tanaka, T. Matsukawa, H. Aritani, S. Matsuo, T. Yamamoto, M. Takahashi, H. Yoshida, T. Yoshida, Y. Ufuktepe, K. G. Nath, S. Kimura, Y. Kitajima, “Performance of the YB66 soft-x-ray monochromator crystal at the wiggler beamline of the UVSOR facility,” J. Synchrotron Radiat. 5, 726–728 (1998).
[CrossRef]

A. D. Smith, B. C. Cowie, G. Sankar, J. M. Thomas, “Use of YB66 as monochromator crystals for soft-energy EXAFS,” J. Synchrotron Radiat. 5, 716–718 (1998).
[CrossRef]

H. Iwasaki, Y. Nakayama, K. Ozutsumi, Y. Yamamoto, Y. Tokunaga, H. Saisho, T. Matsubara, S. Ikeda, “Compact superconducting ring at Ritsumeikan University,” J. Synchrotron Radiat. 5, 1162–1165 (1998).
[CrossRef]

Nucl. Instrum. Methods Phys. Rev. A (1)

M. Koike, R. Beguiristain, J. H. Underwood, T. Namioka, “A new optical design method and its application to an extreme ultraviolet varied line spacing plane grating monochromator,” Nucl. Instrum. Methods Phys. Rev. A 347, 273–277 (1994).
[CrossRef]

Solid State Commun. (1)

J. Wong, G. N. George, I. J. Pickering, Z. U. Rek, M. Rowen, T. Tanaka, G. H. Via, B. DeVries, D. E. W. Vaughan, G. E. Brown, “New opportunities in XAFS investigation in the 1–2-keV region,” Solid State Commun. 92, 559–562 (1994).
[CrossRef]

Other (3)

E. Ishiguro, H. Maezawa, M. Sakurai, M. Yanagihara, M. Watanabe, M. Koeda, T. Nagano, K. Sano, Y. Akune, K. Tanino, “Test of holographic gratings for high-power synchrotron radiation,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 592–603 (1992).
[CrossRef]

W. Werner, “Imaging properties of diffraction gratings,” Ph.D. dissertation (Technische Hogeschool Delft, Delft, The Netherlands, 1970).

M. C. Hettrick, “Grating monochromators and spectrometers based on surface normal rotation,” U.S. patent5,274,435 (28Dec.1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram and the coordinate systems of a SNR M–G monochromator.

Fig. 2
Fig. 2

Spectral images observed in image plane Σ, illustrating the need for wavelength correction. Points B0 and B0′ are the image points formed by the principal rays of wavelengths λ and λ′, respectively.

Fig. 3
Fig. 3

Spot diagrams in case A constructed for design 1 of system I. A rectangular ruled area of 100 mm (W) × 10 mm (L) is assumed: (a) Horizontal and vertical axes of the spot diagrams in the Y and Z axes defined in Σ, respectively. (b) Diagrams obtained by rotating those in (a) about their respective X axes through their respective slant angles ζ. (c) Diagrams obtained by rotating the spot diagrams constructed for respective corrected wavelengths λ′ in the manner used to obtain (b) from (a). For reference the values of the resolving power ℜ estimated from ray-traced line profiles are given in respective diagrams.

Fig. 4
Fig. 4

As in Fig. 3, except that the grating is illuminated through an aperture stop of 100 mm (W B ) × 10 mm (L B ), which is fixed in space (case B).

Fig. 5
Fig. 5

Resolving power of system I as a function of scanning wavelength: (a) those in case A; (b) those in case B. The numerals attached to each curve is the design number in Table 1. The exit slit is rotated through ζ.

Fig. 6
Fig. 6

Same as Fig. 5, except that the monochromator is system II.

Tables (3)

Tables Icon

Table 1 Design Parameters of Systems I and IIa

Tables Icon

Table 2 Values of φ, η0, ψ, ζ, ω, and Δλc Calculated for Systems I and IIa

Tables Icon

Table 3 Values of the Spectral Image Length for Cases A and B, (L image ) A and (L image ) B a

Equations (79)

Equations on this page are rendered with MathJax. Learn more.

β=β0+Δβ,  η=η0+Δη.
YB=-r0 tanΔβ,ZB=r0 secΔβtanη0+Δη,
ZB0=ZBΔβ=Δη=0=r0 tan η0.
nσ=wG+12n20wG2+12n30wG3+18n40wG4+,
wG=w2 cos φ+l2 sin φ,lG=-w2 sin φ+l2 cos φ.
nσ=w2 cos φ+l2 sin φ+12n20w22cos2 φ+2w2l2 sin φ cos φ+l22sin2 φ+12n30w23cos3 φ+3w22l2 sin φ cos2 φ+3w2l22sin2 φ cos φ+l23sin3 φ+18n40w24cos4 φ+4w23l2 sin φ cos3 φ+6w22l22sin2 φ cos2 φ+4w2l23sin3 φ cos φ+l24sin4 φ+.
F=AP+PQ+QB+nmλ.
F=F00+F10w2+F01l2+12F20w22+F11w2l2+F02l22+12F30w23+F21w22l2+F12w2l22+F03l23+18F40w24+F31w23l2+F22w22l22+F13w2l23+F04l24+,
F00=r+D+r sec η,
F10=-sin α-sin β cos η+mλσcos φ,
F01=-sin η+mλσsin φ,
F20=cos2 αrA+T+mλσn20 cos2 φ,
F11=-2 sin β sin η cos2 ηr+2mλσn20 sin φ cos φ,
F02=1rB+cos3 ηr+mλσn20 sin2 φ,
F30=sin α cos2 αrA2+T sin β cos2 ηr-2A102R K sin θ+mλσn30 cos3 φ,
F21=sin η cos ηr3T-2 cos ηr+3mλσn30 sin φ cos2φ,
F12=sin αrB2+2A10B01V sin θR+sin β cos3 ηr2×1-3 sin2 η+3mλσn30 sin2 φ cos φ,
F03=sin η cos4 ηr2+mλσn30 sin3 φ,
F40=cos2 αrA34-5 cos2 α+2A102R KE40 cos θ+2A103R2cos αrA cos θ-A10 cos θR-T cos2 ηr2×1-5 sin2 β cos2 η+mλσn40 cos4 φ,
F31=4 sin β sin η cos3ηr25T-2 cos ηr+4mλσn40 sin φ cos3 φ,
F22=2rB2 sin2 αrB2-cos2 αrA2+4rB21rB-1rAtan θ+2 tan α tan θ cos2 α+2RA10E22+B01G22-2 cos3 ηr23T cos η-2r×1-6 sin2 β sin2 η cos2 η+6mλσn40 sin2 φ cos2 φ,
F13=4 sin β sin η cos4 ηr33-5 sin2 η+4mλσn40 sin3 φ cos φ,
F04=-1rB3+B01G04R-cos5 ηr31-5 sin2 η+mλσn40 sin4 φ.
rA=D+1r-2Rsec θ-1,rB=D+1r-2Rcos θ-1,
T=cos η1-sin2 β cos2 ηr,
K=cos αrA-A10R,  V=cos θrB+B01R,
A10=-cos αAD cos θ,  B01=1BD,
A=1r+1D-2 sec θR,  B=1r+1D-2 cos θR.
E40=-cos αrA1+tan θ7 tan θ+12 tan α+3K1+6A10DR cos αtan2 θ,
E22=A10 cos θ1rB2+B012sin θ tan θRD-1R2+4 tan2 θr2+1r+sec θR1r-cos θR+4B01KrB+2U tan θcos αrBtan θ+tan α-A10DURtan θ,
G22=2A20D1+2DUsin θ cos θ-4A10rA×1rB+B01rsin2 θ cos α-A102B01r2×1+sin2 θcos θ+B01Dcos θ cos αD cos αrA2-2 tan θrAA10 sin θ-sin α,
G04=B012RDsin2 θ-B01 cos θ2U2-A10 sin2 θRD cos α1+2DU2,
U=1rB+B01 cos θR,
A20=A10cos αrAtan θ+tan α-A102R1+6DK sec αtan θ.
F/w2=F10+F20w2+12F11l2+Ow22/R2=0,
F/l2=F01+12F11w2+F02l2+Ow22/R2=0.
sin α+sin β0 cos η0=mλ/σcos φ,
sin η0=mλ/σsin φ.
sin α+sin β0=mλ0/σ
η0>0 when φ>0 and m>0 or φ<0 and m<0,<0 when φ>0 and m<0 or φ<0 and m>0.
cos φ=σmλ cos2 β0sin α+sin β0sin2 α+1-mλ/σ2cos2 β01/2,
λ=σsin α+sin β01-sin2 α-sin2 β0tan2 φ1/2m1+sin2 β0 tan2 φcos φ,
cos η0=sec2 β0(sin α sin β0+sin2 α+1-mλ/σ2cos2 β01/2).
mσλ-λ0mσλ-λ0+2 sin β00for m>0,0for m<0.
λ0λ
F200=cos2 αrA+cos η01-sin2 β0 cos2 η0rm+mλσ n20 cos2 φ=0.
I20=λ1λ2F2002dλ,
I20/rm=0,  I20/n20=0.
F020=1rB+cos3 ηrs+mλσ n20 sin2 φ=0.
cos β0*=cos β0 cos η0.
sin2 β0*=mλ/σ2-2mλ/σsin α cos φ+sin2 α.
dβ0*dλ=-msin α sin2 φ+sin β0 cos η0σ cos β0 cos η0 cos φ1-cos2 β0 cos2 η01/2.
dλds=dλdβ0*cos η0r0=-σ cos β0 cos2 η0 cos φ1-cos2 β0 cos2 η01/2r0msin α sin2 φ+sin β0 cos η0,
-cos β0 cos η0Δβ+sin β0 sin η0Δη+F200w2+12F110l2=0,
-cos η0Δη+12F110w2+F020l2=0,
YB-r0Δβ=aw2+bl2,
ZBr0 tan η0+r0 sec2 η0Δη=r0 tan η0+cw2+dl2,
a=-r0 sec β0 sec η0cos2 αrA+cos2 β0 cos η0r0+n20sin α+sin β0 sec η0cos φ,
b=-r0 sec β0 sec η0sin β0 tan η0rB+n20×sin α+sin β0 sec η0sin φ,
c=r0 sec3 η0 sin η0-sin β0 cos2 η0r0+n20 cos φ,
d=r0 sec3 η01rB+cos3 η0r0+n20 sin η0 sin φ.
Z=Y-aktan ψ+r0 tan η0+ck
tan ψ=db=-cos β0r0+rB cos3 η0+r0rBn20 sin η0 sin φr0 cos η0sin β0 sin η0+rBn20 sin φsin α cos η0+sin β0.
ζ=ψ-π2.
LimageA=|Zmax-Zmincsc ψ|=|cW cos φ-L sin φ+dW sin φ+L cos φcsc ψ|  for φ<0.
LimageA=|-cW cos φ+L sin φ+d-W sin φ+L cos φcsc ψ|  for φ<0.
lmax=LB/2,  lmin=-LB/2
LimageB=|cWB+dLBcsc ψ|.
B0B0=r0sinψ+ω |tan η0 cos ψ|,
tan ω=ZB0-r0 tan η0YB0=ΔηΔβsec2 η0.
cos β0 cos η0Δβ-sin β0sin η0Δη=mΔλc/σcos φ,
cos η0Δη=mΔλc/σsin φ.
ΔηΔβ=cos β0 sin φcos φ+sin β0 tan η0 sin φ.
tan ω=sin φcos φ+sin β0 tan η0 sin φcos β0 sec2 η0.
|Δλc||λ-λ|=B0B0dλds.
Δλc>0 when φ>0 and ψ>π/2 or when φ<0 and ψ<π/2,<0 when φ>0 and ψ<π/2 or when φ<0 and ψ>π/2.
n30λ1λ2F3002dλ=0,n40λ1λ2F4002dλ=0.
L2=1-M22-N221/2,M2=M2+mλnw2,N2=N2+mλ nl2.
=λΔλ=λ2.643σY|dλ/ds|.

Metrics