Abstract

The purpose of this investigation is to improve the study of the characteristics of noncollinear acousto-optic tunable filters (AOTFs) used in imaging spectroscopy. Three filters were characterized and the results compared with tuning models to verify that device operation can be reliably predicted in advance. All these devices use tellurium dioxide as the interaction medium and have large geometric apertures for spectroscopic imaging applications in the spectral range 0.5–3.5 µm. The device characteristics that we studied were compared with the results of AOTF models, and the spectral and angular dependence of acoustic frequency and bandpass width for both output polarization states were confirmed by measurements. One of the AOTFs was used as a dispersive element coupled to external imaging optics. We summarize measurements of the basic spectral and imaging characteristics in this configuration.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Glenar, G. Bjoraker, D. Blaney, J. Hillman, “AIMS: a prototype visible and near-IR imaging spectrometer for Mars surface science,” paper presented at the 31st Annual Lunar and Planetary Science Conference, Houston, Tex., March 2000, paper 1954.
  2. D. Glenar, J. Hillman, D. Blaney, “AIMS: acousto-optic imaging spectrometer for spectral mapping of solid surfaces,” paper presented at the Fourth International Academy of Astronautics International Conference on Low-Cost Planetary Missions, Applied Physic Laboratory, John Hopkins University, Laurel, Md., 2–5 May 2000, paper 1004.
  3. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
    [CrossRef]
  4. D. Glenar, J. Hillman, B. Saif, J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33, 7412–7424 (1994).
    [CrossRef] [PubMed]
  5. D. Glenar, J. Hillman, M. LeLouarn, R. Fugate, J. Drummond, “Multispectral imagery of Jupiter and Saturn using adaptive optics and acousto-optic tuning,” Publ. Astron. Soc. Pac. 109, 326–337 (1997).
    [CrossRef]
  6. N. Chanover, D. Glenar, J. Hillman, “Multispectral near-IR imaging of Venus nightside cloud features,” J. Geophys. Res. 103, 31335–31348 (1998).
    [CrossRef]
  7. G. Georgiev, L. Konstantinov, “Spectral characteristics of noncollinear acousto-optic tunable filters,” Opt. Laser Technol. 29, 267–270 (1997).
    [CrossRef]
  8. G. Georgiev, E. Georgieva, L. Konstantinov, “Angular and power characteristics of noncollinear acousto-optic tunable filters,” Opt. Lasers Eng. 31, 1–12 (1999).
    [CrossRef]
  9. G. Georgiev, L. Konstantinov, “Study of characteristics of noncollinear acousto-optic tunable filters,” Optik (Stuttgart) 110, 545–553 (1999).
  10. I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).
    [CrossRef]
  11. J. Sweat, D. Wetzel, “Near-infrared acousto-optic tunable filter based instrumentation for the measurement of dynamic spectra of polymers,” Rev. Sci. Instrum. 72, 2153–2158 (2001).
    [CrossRef]
  12. A. Cheng, J. Zhu, M. Pau, “Characterization of a noncollinear acousto-optic tunable filter and its resolution enhancement as a near-infrared spectrometer,” Appl. Spectrosc. 55, 350–355 (2001).
    [CrossRef]
  13. N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
    [CrossRef]
  14. J. Berny, J. Bourgoin, B. Ayrault, “Dispersion des indices de refraction du Molybdate de Plomb (PbMoO4) et de la paratellurite (TeO2),” Opt. Commun. 6, 383–387 (1972).
    [CrossRef]
  15. P. Gass, J. Sambles, “Accurate design of a noncollinear acousto-optic tunable filter,” Opt. Lett. 16, 429–431 (1991).
    [CrossRef] [PubMed]
  16. I. Silvestrova, Y. Pisarevskii, P. Senyushenkov, “Temperature dependence of elastic properties of paratellurite,” Phys. Status Solids A 101, 437–444 (1987).
    [CrossRef]
  17. Y. Ohmachi, N. Uchida, “Temperature dependence of elastic, dielectric and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970).
    [CrossRef]

2001 (2)

J. Sweat, D. Wetzel, “Near-infrared acousto-optic tunable filter based instrumentation for the measurement of dynamic spectra of polymers,” Rev. Sci. Instrum. 72, 2153–2158 (2001).
[CrossRef]

A. Cheng, J. Zhu, M. Pau, “Characterization of a noncollinear acousto-optic tunable filter and its resolution enhancement as a near-infrared spectrometer,” Appl. Spectrosc. 55, 350–355 (2001).
[CrossRef]

1999 (2)

G. Georgiev, E. Georgieva, L. Konstantinov, “Angular and power characteristics of noncollinear acousto-optic tunable filters,” Opt. Lasers Eng. 31, 1–12 (1999).
[CrossRef]

G. Georgiev, L. Konstantinov, “Study of characteristics of noncollinear acousto-optic tunable filters,” Optik (Stuttgart) 110, 545–553 (1999).

1998 (1)

N. Chanover, D. Glenar, J. Hillman, “Multispectral near-IR imaging of Venus nightside cloud features,” J. Geophys. Res. 103, 31335–31348 (1998).
[CrossRef]

1997 (2)

G. Georgiev, L. Konstantinov, “Spectral characteristics of noncollinear acousto-optic tunable filters,” Opt. Laser Technol. 29, 267–270 (1997).
[CrossRef]

D. Glenar, J. Hillman, M. LeLouarn, R. Fugate, J. Drummond, “Multispectral imagery of Jupiter and Saturn using adaptive optics and acousto-optic tuning,” Publ. Astron. Soc. Pac. 109, 326–337 (1997).
[CrossRef]

1994 (1)

1991 (1)

1987 (1)

I. Silvestrova, Y. Pisarevskii, P. Senyushenkov, “Temperature dependence of elastic properties of paratellurite,” Phys. Status Solids A 101, 437–444 (1987).
[CrossRef]

1981 (1)

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).
[CrossRef]

1974 (1)

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

1972 (1)

J. Berny, J. Bourgoin, B. Ayrault, “Dispersion des indices de refraction du Molybdate de Plomb (PbMoO4) et de la paratellurite (TeO2),” Opt. Commun. 6, 383–387 (1972).
[CrossRef]

1971 (1)

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
[CrossRef]

1970 (1)

Y. Ohmachi, N. Uchida, “Temperature dependence of elastic, dielectric and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970).
[CrossRef]

Ayrault, B.

J. Berny, J. Bourgoin, B. Ayrault, “Dispersion des indices de refraction du Molybdate de Plomb (PbMoO4) et de la paratellurite (TeO2),” Opt. Commun. 6, 383–387 (1972).
[CrossRef]

Bergstralh, J.

Berny, J.

J. Berny, J. Bourgoin, B. Ayrault, “Dispersion des indices de refraction du Molybdate de Plomb (PbMoO4) et de la paratellurite (TeO2),” Opt. Commun. 6, 383–387 (1972).
[CrossRef]

Bjoraker, G.

D. Glenar, G. Bjoraker, D. Blaney, J. Hillman, “AIMS: a prototype visible and near-IR imaging spectrometer for Mars surface science,” paper presented at the 31st Annual Lunar and Planetary Science Conference, Houston, Tex., March 2000, paper 1954.

Blaney, D.

D. Glenar, G. Bjoraker, D. Blaney, J. Hillman, “AIMS: a prototype visible and near-IR imaging spectrometer for Mars surface science,” paper presented at the 31st Annual Lunar and Planetary Science Conference, Houston, Tex., March 2000, paper 1954.

D. Glenar, J. Hillman, D. Blaney, “AIMS: acousto-optic imaging spectrometer for spectral mapping of solid surfaces,” paper presented at the Fourth International Academy of Astronautics International Conference on Low-Cost Planetary Missions, Applied Physic Laboratory, John Hopkins University, Laurel, Md., 2–5 May 2000, paper 1004.

Bourgoin, J.

J. Berny, J. Bourgoin, B. Ayrault, “Dispersion des indices de refraction du Molybdate de Plomb (PbMoO4) et de la paratellurite (TeO2),” Opt. Commun. 6, 383–387 (1972).
[CrossRef]

Chang, I. C.

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).
[CrossRef]

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Chanover, N.

N. Chanover, D. Glenar, J. Hillman, “Multispectral near-IR imaging of Venus nightside cloud features,” J. Geophys. Res. 103, 31335–31348 (1998).
[CrossRef]

Cheng, A.

Drummond, J.

D. Glenar, J. Hillman, M. LeLouarn, R. Fugate, J. Drummond, “Multispectral imagery of Jupiter and Saturn using adaptive optics and acousto-optic tuning,” Publ. Astron. Soc. Pac. 109, 326–337 (1997).
[CrossRef]

Fugate, R.

D. Glenar, J. Hillman, M. LeLouarn, R. Fugate, J. Drummond, “Multispectral imagery of Jupiter and Saturn using adaptive optics and acousto-optic tuning,” Publ. Astron. Soc. Pac. 109, 326–337 (1997).
[CrossRef]

Gass, P.

Georgiev, G.

G. Georgiev, L. Konstantinov, “Study of characteristics of noncollinear acousto-optic tunable filters,” Optik (Stuttgart) 110, 545–553 (1999).

G. Georgiev, E. Georgieva, L. Konstantinov, “Angular and power characteristics of noncollinear acousto-optic tunable filters,” Opt. Lasers Eng. 31, 1–12 (1999).
[CrossRef]

G. Georgiev, L. Konstantinov, “Spectral characteristics of noncollinear acousto-optic tunable filters,” Opt. Laser Technol. 29, 267–270 (1997).
[CrossRef]

Georgieva, E.

G. Georgiev, E. Georgieva, L. Konstantinov, “Angular and power characteristics of noncollinear acousto-optic tunable filters,” Opt. Lasers Eng. 31, 1–12 (1999).
[CrossRef]

Glenar, D.

N. Chanover, D. Glenar, J. Hillman, “Multispectral near-IR imaging of Venus nightside cloud features,” J. Geophys. Res. 103, 31335–31348 (1998).
[CrossRef]

D. Glenar, J. Hillman, M. LeLouarn, R. Fugate, J. Drummond, “Multispectral imagery of Jupiter and Saturn using adaptive optics and acousto-optic tuning,” Publ. Astron. Soc. Pac. 109, 326–337 (1997).
[CrossRef]

D. Glenar, J. Hillman, B. Saif, J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33, 7412–7424 (1994).
[CrossRef] [PubMed]

D. Glenar, J. Hillman, D. Blaney, “AIMS: acousto-optic imaging spectrometer for spectral mapping of solid surfaces,” paper presented at the Fourth International Academy of Astronautics International Conference on Low-Cost Planetary Missions, Applied Physic Laboratory, John Hopkins University, Laurel, Md., 2–5 May 2000, paper 1004.

D. Glenar, G. Bjoraker, D. Blaney, J. Hillman, “AIMS: a prototype visible and near-IR imaging spectrometer for Mars surface science,” paper presented at the 31st Annual Lunar and Planetary Science Conference, Houston, Tex., March 2000, paper 1954.

Hillman, J.

N. Chanover, D. Glenar, J. Hillman, “Multispectral near-IR imaging of Venus nightside cloud features,” J. Geophys. Res. 103, 31335–31348 (1998).
[CrossRef]

D. Glenar, J. Hillman, M. LeLouarn, R. Fugate, J. Drummond, “Multispectral imagery of Jupiter and Saturn using adaptive optics and acousto-optic tuning,” Publ. Astron. Soc. Pac. 109, 326–337 (1997).
[CrossRef]

D. Glenar, J. Hillman, B. Saif, J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33, 7412–7424 (1994).
[CrossRef] [PubMed]

D. Glenar, J. Hillman, D. Blaney, “AIMS: acousto-optic imaging spectrometer for spectral mapping of solid surfaces,” paper presented at the Fourth International Academy of Astronautics International Conference on Low-Cost Planetary Missions, Applied Physic Laboratory, John Hopkins University, Laurel, Md., 2–5 May 2000, paper 1004.

D. Glenar, G. Bjoraker, D. Blaney, J. Hillman, “AIMS: a prototype visible and near-IR imaging spectrometer for Mars surface science,” paper presented at the 31st Annual Lunar and Planetary Science Conference, Houston, Tex., March 2000, paper 1954.

Konstantinov, L.

G. Georgiev, E. Georgieva, L. Konstantinov, “Angular and power characteristics of noncollinear acousto-optic tunable filters,” Opt. Lasers Eng. 31, 1–12 (1999).
[CrossRef]

G. Georgiev, L. Konstantinov, “Study of characteristics of noncollinear acousto-optic tunable filters,” Optik (Stuttgart) 110, 545–553 (1999).

G. Georgiev, L. Konstantinov, “Spectral characteristics of noncollinear acousto-optic tunable filters,” Opt. Laser Technol. 29, 267–270 (1997).
[CrossRef]

LeLouarn, M.

D. Glenar, J. Hillman, M. LeLouarn, R. Fugate, J. Drummond, “Multispectral imagery of Jupiter and Saturn using adaptive optics and acousto-optic tuning,” Publ. Astron. Soc. Pac. 109, 326–337 (1997).
[CrossRef]

Ohmachi, Y.

Y. Ohmachi, N. Uchida, “Temperature dependence of elastic, dielectric and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970).
[CrossRef]

Pau, M.

Pisarevskii, Y.

I. Silvestrova, Y. Pisarevskii, P. Senyushenkov, “Temperature dependence of elastic properties of paratellurite,” Phys. Status Solids A 101, 437–444 (1987).
[CrossRef]

Saif, B.

Sambles, J.

Senyushenkov, P.

I. Silvestrova, Y. Pisarevskii, P. Senyushenkov, “Temperature dependence of elastic properties of paratellurite,” Phys. Status Solids A 101, 437–444 (1987).
[CrossRef]

Silvestrova, I.

I. Silvestrova, Y. Pisarevskii, P. Senyushenkov, “Temperature dependence of elastic properties of paratellurite,” Phys. Status Solids A 101, 437–444 (1987).
[CrossRef]

Sweat, J.

J. Sweat, D. Wetzel, “Near-infrared acousto-optic tunable filter based instrumentation for the measurement of dynamic spectra of polymers,” Rev. Sci. Instrum. 72, 2153–2158 (2001).
[CrossRef]

Uchida, N.

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
[CrossRef]

Y. Ohmachi, N. Uchida, “Temperature dependence of elastic, dielectric and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970).
[CrossRef]

Wetzel, D.

J. Sweat, D. Wetzel, “Near-infrared acousto-optic tunable filter based instrumentation for the measurement of dynamic spectra of polymers,” Rev. Sci. Instrum. 72, 2153–2158 (2001).
[CrossRef]

Zhu, J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Appl. Spectrosc. (1)

J. Appl. Phys. (1)

Y. Ohmachi, N. Uchida, “Temperature dependence of elastic, dielectric and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970).
[CrossRef]

J. Geophys. Res. (1)

N. Chanover, D. Glenar, J. Hillman, “Multispectral near-IR imaging of Venus nightside cloud features,” J. Geophys. Res. 103, 31335–31348 (1998).
[CrossRef]

Opt. Commun. (1)

J. Berny, J. Bourgoin, B. Ayrault, “Dispersion des indices de refraction du Molybdate de Plomb (PbMoO4) et de la paratellurite (TeO2),” Opt. Commun. 6, 383–387 (1972).
[CrossRef]

Opt. Eng. (1)

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).
[CrossRef]

Opt. Laser Technol. (1)

G. Georgiev, L. Konstantinov, “Spectral characteristics of noncollinear acousto-optic tunable filters,” Opt. Laser Technol. 29, 267–270 (1997).
[CrossRef]

Opt. Lasers Eng. (1)

G. Georgiev, E. Georgieva, L. Konstantinov, “Angular and power characteristics of noncollinear acousto-optic tunable filters,” Opt. Lasers Eng. 31, 1–12 (1999).
[CrossRef]

Opt. Lett. (1)

Optik (Stuttgart) (1)

G. Georgiev, L. Konstantinov, “Study of characteristics of noncollinear acousto-optic tunable filters,” Optik (Stuttgart) 110, 545–553 (1999).

Phys. Rev. B (1)

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
[CrossRef]

Phys. Status Solids A (1)

I. Silvestrova, Y. Pisarevskii, P. Senyushenkov, “Temperature dependence of elastic properties of paratellurite,” Phys. Status Solids A 101, 437–444 (1987).
[CrossRef]

Publ. Astron. Soc. Pac. (1)

D. Glenar, J. Hillman, M. LeLouarn, R. Fugate, J. Drummond, “Multispectral imagery of Jupiter and Saturn using adaptive optics and acousto-optic tuning,” Publ. Astron. Soc. Pac. 109, 326–337 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Sweat, D. Wetzel, “Near-infrared acousto-optic tunable filter based instrumentation for the measurement of dynamic spectra of polymers,” Rev. Sci. Instrum. 72, 2153–2158 (2001).
[CrossRef]

Other (2)

D. Glenar, G. Bjoraker, D. Blaney, J. Hillman, “AIMS: a prototype visible and near-IR imaging spectrometer for Mars surface science,” paper presented at the 31st Annual Lunar and Planetary Science Conference, Houston, Tex., March 2000, paper 1954.

D. Glenar, J. Hillman, D. Blaney, “AIMS: acousto-optic imaging spectrometer for spectral mapping of solid surfaces,” paper presented at the Fourth International Academy of Astronautics International Conference on Low-Cost Planetary Missions, Applied Physic Laboratory, John Hopkins University, Laurel, Md., 2–5 May 2000, paper 1004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Wave-vector diagram of the acousto-optic interaction in noncollinear AOTFs.

Fig. 2
Fig. 2

(a) Geometry of AOTFs VNIR-E and VNIR-C. (b) Geometry of the SWIR AOTF.

Fig. 3
Fig. 3

Experimental setup for measurement of AOTF characteristics.

Fig. 4
Fig. 4

Refractive-index data for n o and n e from Uchida13 (open squares), Berny et al.14 (open circles), and best-fit curve (bold curves). The thin curves show the Uchida-only predictions.

Fig. 5
Fig. 5

(a) Acoustic frequency versus wavelength for VNIR-E. Curves show model calculations by use of the combined visible and IR refractive-index data. Data points are laser peak transmission measurements. (b) Acoustic frequency versus wavelength for SWIR. The bold curve shows model calculations by use of the combined VNIR refractive-index data. The thin curve shows the Uchida-only predictions. Data points are laser peak transmission measurements.

Fig. 6
Fig. 6

(a) Acoustic frequency versus angle of incidence for the VNIR-E AOTF at λ = 632.8 nm. (b) Acoustic frequency versus angle of incidence for the SWIR AOTF at 3.39 µm.

Fig. 7
Fig. 7

Bandpass shape of VNIR-E AOTF and comparison sinc2 function.

Fig. 8
Fig. 8

Measurements of the central lobe spectral bandpass width by use of VNIR-E.

Fig. 9
Fig. 9

AOTF with coupled imaging optics. GPIB, general-purpose interface bus.

Fig. 10
Fig. 10

Spectral imaging of reflectance standard plates with the VNIR-C device. (a) Monochromatic image of target plates from a 256-wavelength AOTF spectral imaging cube. (b) Reflectance spectrum of erbium oxide plate at pixel location A. (c) Reflectance spectrum of dysprosium oxide plate at pixel location B. Calibrated reference spectra are shown for comparison (thin curves).

Fig. 11
Fig. 11

Point spectrum A acquired by the AOTF spectral imager mapped into N coordinates. We closely reproduce the spectral contrast in the erbium oxide features by smoothing the reference spectrum with a sinc2 function and a low-amplitude trapezoidal pedestal (see text for details).

Tables (3)

Tables Icon

Table 1 Main Design Features of the AOTFs Studied

Tables Icon

Table 2 TeO2 Index of Refraction Sellmeier Coefficients

Tables Icon

Table 3 TeO2 Elastic Constants

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

|ki|=2πniλ,  |kd|=2πndλ,  |ka|=2πfV,
n=1cos2 θeno2+sin2 θene21/2,
θa=-arctann sin θe-no sin θon cos θe-no cos θo.
θo=arctannone2 tan θe.
n2=1+C0λ2λ2-C22+C1λ2λ2-C32,
fO=Vλ nθicosθi-θa+cos2θi-θa+none2-1sin2 θi1/2.
fE=Vλ nθaCθi+Cθi2-none2-1sin2 θi1/2,
Cθi=nθanocos θa cos θi+none2 sin θa sin θi.
V=C11-C122cos2 α+C44 sin2 αρ1/2,
Δλ=1.8πλ2BλL sin2 θi,
L=Wcosθi-α.
Bλ=2πδn-λ δnλ,  δn=ne-no.
dNdλ=-Bλλ2Bλ0.
N=- 1Bλ0  1λBλλ dλ+C,
N=lnm+b/λbBλ0+Cm, b, λ0.

Metrics