Abstract

Surface topography and light scattering were measured on 15 samples ranging from those having smooth surfaces to others with ground surfaces. The measurement techniques included an atomic force microscope, mechanical and optical profilers, confocal laser scanning microscope, angle-resolved scattering, and total scattering. The samples included polished and ground fused silica, silicon carbide, sapphire, electroplated gold, and diamond-turned brass. The measurement instruments and techniques had different surface spatial wavelength band limits, so the measured roughnesses were not directly comparable. Two-dimensional power spectral density (PSD) functions were calculated from the digitized measurement data, and we obtained rms roughnesses by integrating areas under the PSD curves between fixed upper and lower band limits. In this way, roughnesses measured with different instruments and techniques could be directly compared. Although smaller differences between measurement techniques remained in the calculated roughnesses, these could be explained mostly by surface topographical features such as isolated particles that affected the instruments in different ways.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering, 2nd ed. (Optical Society of America, Washington, D.C., 1999), Chap. 3 and references therein.
  2. Standard Test Method for Measuring the Effective Surface Roughness of Optical Components by Total Integrated Scattering, ASTM Doc. F1048–87 (American Society for Testing and Materials, Philadelphia, Pa., 1987).
  3. J. A. Detrio, S. M. Miner, “Standardized total integrated scatter measurements of optical surfaces,” Opt. Eng. 24, 419–422 (1985).
    [CrossRef]
  4. Standard Practice for Angle Resolved Optical Scatter Measurements on Specular or Diffuse Surfaces, ASTM Doc. E1392–90 (American Society for Testing and Materials, Philadelphia, Pa., 1990).
  5. T. A. Leonard, M. Pantoliano, “BRDF round robin,” in Stray Light and Contamination in Optical Systems, R. P. Breault, ed., Proc. SPIE967, 226–235 (1989).
    [CrossRef]
  6. T. A. Leonard, “Standardization of optical scatter measurements,” in Stray Radiation in Optical Systems, R. P. Breault, ed., Proc. SPIE1331, 188–194 (1990).
    [CrossRef]
  7. P. Kadkhoda, A. Müller, D. Ristau, A. Duparré, S. Gliech, H. Lauth, U. Schuhmann, N. Reng, M. Tilsch, R. Schuhmann, C. Amra, C. Deumie, C. Jolie, H. Kessler, T. Lindström, C.-G. Ribbing, J. M. Bennett, “International round-robin experiment to test the International Organization for Standardization total-scattering draft standard,” Appl. Opt. 39, 3321–3332 (2000).
    [CrossRef]
  8. See Ref. 1, pp. 58–64.
  9. J. C. Stover, ed., Optical Scattering: Measurement and Analysis, 2nd ed., Vol. PM24 of the Press Monographs (SPIE, Bellingham, Wash., 1995).
  10. E. L. Church, P. Z. Takacs, “The optimal estimation of finish parameters,” in Optical Scatter: Applications, Measurement, and Theory, J. C. Stover, ed., Proc. SPIE1530, 71–78 (1991).
    [CrossRef]
  11. J. M. Elson, J. M. Bennett, J. C. Stover, “Wavelength and angular dependence of light scattering from beryllium: comparison of theory and experiment,” Appl. Opt. 32, 3362–3376 (1993).
    [CrossRef] [PubMed]
  12. E. L. Church, “Fractal surface finish,” Appl. Opt. 27, 1518–1526 (1988).
    [CrossRef] [PubMed]
  13. E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Round robin determination of power spectral densities of different Si wafer surfaces,” in Flatness, Roughness, and Discrete Defects Characterization for Computer Disks, Wafers, and Flat Panel Displays II, J. C. Stover, ed., Proc. SPIE3275, 26–36 (1998).
    [CrossRef]
  14. E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Power spectral densities: a multiple technique study of different Si wafer surfaces,” J. Vac. Sci. Technol.20 (Jan./Feb. 2002) (to be published).
  15. T. Abe, E. F. Steigmeier, W. Hagleitner, A. J. Pidduck, “Microroughness measurements on polished silicon wafers,” Jpn. J. Appl. Phys. 31, Part 1, 721–728 (1992).
  16. A. Duparré, S. Jakobs, “Combination of surface characterization techniques for investigating optical thin-film components,” Appl. Opt. 35, 5052–5058 (1996).
    [CrossRef] [PubMed]
  17. A. Duparré, G. Notni, “Multi-type surface and thin film characterization using light scattering, scanning-force microscopy and white light interferometry,” in Optical Metrology, G. A. Al-Jumaily, ed., Vol. CR72 of SPIE Critical Reviews of Optical Science and Technology (SPIE, Bellingham, Wash., 1999), pp. 213–231.
  18. R. D. Jacobson, S. R. Wilson, G. A. Al-Jumaily, J. R. McNeil, J. M. Bennett, L. Mattsson, “Microstructure characterization by angle-resolved scatter and comparison to measurements made by other techniques,” Appl. Opt. 31, 1426–1435 (1992).
    [CrossRef] [PubMed]
  19. G. Nomarski, “Microinterféromètre différentiel à ondes polarisées,” J. Phys. Radium 16, 9S–13S (1955).
  20. G. Nomarski, A. R. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall. (Paris) 52, 121–134 (1955).
  21. See Ref. 1, pp. 7–9.
  22. R. Young, J. Ward, F. Scire, “The Topografiner: an instrument for measuring surface microtopography,” Rev. Sci. Instrum. 43, 999–1011 (1972).
    [CrossRef]
  23. G. Binnig, H. Rohrer, “Scanning tunneling microscopy,” Helv. Phys. Acta 55, 726–735 (1982).
  24. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
    [CrossRef]
  25. G. Binnig, C. F. Quate, Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
    [CrossRef] [PubMed]
  26. D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces (Oxford U. Press, New York, 1991).
  27. S. N. Magonov, M.-H. Whangbo, Surface Analysis with STM and SFM (VCH, Weinheim, Germany, 1995).
    [CrossRef]
  28. Digital Instruments, a division of Veeco Process Metrology, 112 Robin Hill Road, Goleta, Calif. 93117; http://www.di.com .
  29. A. Duparré, C. Ruppe, K. A. Pischow, M. Adamik, P. B. Barna, “Atomic force microscopy on cross-sections of optical coatings: a new method,” Thin Solid Films 261, 70–75 (1995).
  30. C. Ruppe, A. Duparré, “Roughness analysis of optical films and substrates by atomic force microscopy,” Thin Solid Films 288, 8–13 (1996).
    [CrossRef]
  31. Taylor Hobson Limited, P.O. Box 36, 2 New Star Road, Leicester LE4 7JQ UK (U.S. address: 2100 Golf Road, Suite 350, Rolling Meadows, Ill. 60008-4231).
  32. J. M. Bennett, J. H. Dancy, “Stylus profiling instrument for measuring statistical properties of smooth optical surfaces,” Appl. Opt. 20, 1785–1802 (1981).
    [CrossRef] [PubMed]
  33. M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
    [CrossRef]
  34. G. S. Kino, S. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
    [CrossRef] [PubMed]
  35. B. S. Lee, T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
    [CrossRef] [PubMed]
  36. R.-J. Recknagel, G. Notni, “Measurement and analysis of microtopography using wavelet methods,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 133–143 (1997).
    [CrossRef]
  37. R.-J. Recknagel, G. Notni, “Analysis of white light interferograms using wavelet methods,” Opt. Commun. 148, 122–128 (1998).
    [CrossRef]
  38. C. J. R. Sheppard, “Scanning optical microscopy,” in Advances in Optical and Electron Microscopy, R. Barer, V. E. Cosslett, eds. (Academic, London, 1987), Vol. 10, Chap. 1, pp. 1–98.
  39. T. Wilson, “Optical aspects of confocal microscopy,” in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), Chap. 3.
  40. N. J. McCormick, “Confocal scanning optical microscopy,” in Surface Characterization, A User’s Sourcebook, D. Brune, R. Hellborg, H. J. Whitlow, O. Hunderi, eds. (Wiley-VCH, Weinheim, Germany, 1997), pp. 57–76.
    [CrossRef]
  41. Carl Zeiss Jena GmbH, Carl-Zeiss Promenade 1a, D-07745 Jena, Germany; http://www.zeiss.de .
  42. See Ref. 1, pp. 28–37, 62–67.
  43. J. Neubert, T. Seifert, N. Czarnetzki, T. Weigel, “Fully automated angle resolved scatterometer,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baeumen, E. Sein, eds., Proc. SPIE2210, 543–552 (1994).
    [CrossRef]
  44. A. Duparré, S. Gliech, J. Steinert, “Light scattering of UV-optical components,” in Proceedings of the Fifth International Workshop on Laser Beam and Optics Characterization, (LBOC 5) (VDI Technologiezentrum, Düsseldorf, Germany, 2000), pp. 272–282.
  45. Optics and Optical Instruments—Lasers and Laser-Related Equipment—Test Methods for Radiation Scattered by Optical Components, ISO/FDIS 13696, Technical Committee ISO/TC 172/SC9/WG6, Final Draft Standard (International Organization for Standardization, Geneva, Switzerland, 1998).
  46. D. Rönnow, E. Veszelei, “Design review of an instrument for spectroscopic total integrated light scattering measurements in the visible wavelength region,” Rev. Sci. Instrum. 65, 327–334 (1994).
    [CrossRef]
  47. A. Duparré, S. Gliech, “Quality assessment from supersmooth to rough surfaces by multiple wavelength light scattering measurement,” in Scattering and Surface Roughness, Z. Gu, A. A. Maradudin, eds., Proc. SPIE3141, 57–64 (1997).
    [CrossRef]
  48. S. Gliech, J. Steinert, M. Flemming, A. Duparré, “DUV/VUV light scattering measurement of optical components for lithography applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries, G. A. Al-Jumarily, A. Duparré, B. Singh, eds., Proc. SPIE4099, 74–81 (2000).
    [CrossRef]
  49. We used 99% reflectance Spectralon, Labsphere Inc., subsidiary of X-Rite, Inc., P.O. Box 70, North Sutton, N.H. 03260-0070; http://www.labsphere.com .
  50. J. M. Elson, J. M. Bennett, “Calculation of the power spectral density from surface profile data,” Appl. Opt. 34, 201–208 (1995).
    [CrossRef] [PubMed]
  51. E. L. Church, P. Z. Takacs, “BASIC program for power spectrum estimation,” Informal Rep. 490.35 (Brookhaven National Laboratory, Upton, N.Y., 1993).
  52. J. Ferré-Borrull, J. Steinert, A. Duparré, “Extending the capabilities of scanning probe microscopy for microroughness analysis in surface engineering,” Surf. Interface Anal. 29, Special Issue: Papers Presented at the Fourth International Conference on the Development and Technological Application of Scanning Probe Methods33 (2002) (to be published).
  53. J. M. Elson, J. M. Bennett, “Vector scattering theory,” Opt. Eng. 18, 116–124 (1979).
    [CrossRef]
  54. E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).
    [CrossRef]
  55. P. Bousquet, F. Flory, P. Roche, “Scattering from multilayer films: theory and experiment,” J. Opt. Soc. Am. 71, 1115–1123 (1981).
    [CrossRef]
  56. See Ref. 1, pp. 66–67.
  57. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1990).
  58. O. Kienzle, V. Scheuer, J. Staub, T. Tschudi, “Design of an integrated scatter instrument for measuring scatter losses of superpolished optical surfaces, application to surface characterization of transparent fused quartz substrates,” in Optical Interference Coatings, F. Abèles, ed., Proc. SPIE2253, 1131–1142 (1994).
    [CrossRef]
  59. J. M. Bennett, “Surface roughness measurement,” in Optical Measurement Techniques and Applications, P. K. Rastogi, ed. (Artech House, Norwood, Mass., 1997), Chap. 12, pp. 341–367.
  60. J. M. Bennett, J. Jahanmir, J. C. Podlesny, T. L. Balter, D. T. Hobbs, “Scanning force microscope as a tool for studying optical surfaces,” Appl. Opt. 34, 213–230 (1995).
    [CrossRef] [PubMed]

2000

1998

R.-J. Recknagel, G. Notni, “Analysis of white light interferograms using wavelet methods,” Opt. Commun. 148, 122–128 (1998).
[CrossRef]

1996

A. Duparré, S. Jakobs, “Combination of surface characterization techniques for investigating optical thin-film components,” Appl. Opt. 35, 5052–5058 (1996).
[CrossRef] [PubMed]

C. Ruppe, A. Duparré, “Roughness analysis of optical films and substrates by atomic force microscopy,” Thin Solid Films 288, 8–13 (1996).
[CrossRef]

1995

1994

D. Rönnow, E. Veszelei, “Design review of an instrument for spectroscopic total integrated light scattering measurements in the visible wavelength region,” Rev. Sci. Instrum. 65, 327–334 (1994).
[CrossRef]

1993

1992

1990

1988

1986

G. Binnig, C. F. Quate, Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[CrossRef] [PubMed]

1985

J. A. Detrio, S. M. Miner, “Standardized total integrated scatter measurements of optical surfaces,” Opt. Eng. 24, 419–422 (1985).
[CrossRef]

1982

G. Binnig, H. Rohrer, “Scanning tunneling microscopy,” Helv. Phys. Acta 55, 726–735 (1982).

G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[CrossRef]

1981

1979

J. M. Elson, J. M. Bennett, “Vector scattering theory,” Opt. Eng. 18, 116–124 (1979).
[CrossRef]

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).
[CrossRef]

1972

R. Young, J. Ward, F. Scire, “The Topografiner: an instrument for measuring surface microtopography,” Rev. Sci. Instrum. 43, 999–1011 (1972).
[CrossRef]

1955

G. Nomarski, “Microinterféromètre différentiel à ondes polarisées,” J. Phys. Radium 16, 9S–13S (1955).

G. Nomarski, A. R. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall. (Paris) 52, 121–134 (1955).

Abe, T.

T. Abe, E. F. Steigmeier, W. Hagleitner, A. J. Pidduck, “Microroughness measurements on polished silicon wafers,” Jpn. J. Appl. Phys. 31, Part 1, 721–728 (1992).

Adamik, M.

A. Duparré, C. Ruppe, K. A. Pischow, M. Adamik, P. B. Barna, “Atomic force microscopy on cross-sections of optical coatings: a new method,” Thin Solid Films 261, 70–75 (1995).

Al-Jumaily, G. A.

Amra, C.

Balter, T. L.

Barna, P. B.

A. Duparré, C. Ruppe, K. A. Pischow, M. Adamik, P. B. Barna, “Atomic force microscopy on cross-sections of optical coatings: a new method,” Thin Solid Films 261, 70–75 (1995).

Bennett, J. M.

P. Kadkhoda, A. Müller, D. Ristau, A. Duparré, S. Gliech, H. Lauth, U. Schuhmann, N. Reng, M. Tilsch, R. Schuhmann, C. Amra, C. Deumie, C. Jolie, H. Kessler, T. Lindström, C.-G. Ribbing, J. M. Bennett, “International round-robin experiment to test the International Organization for Standardization total-scattering draft standard,” Appl. Opt. 39, 3321–3332 (2000).
[CrossRef]

J. M. Bennett, J. Jahanmir, J. C. Podlesny, T. L. Balter, D. T. Hobbs, “Scanning force microscope as a tool for studying optical surfaces,” Appl. Opt. 34, 213–230 (1995).
[CrossRef] [PubMed]

J. M. Elson, J. M. Bennett, “Calculation of the power spectral density from surface profile data,” Appl. Opt. 34, 201–208 (1995).
[CrossRef] [PubMed]

J. M. Elson, J. M. Bennett, J. C. Stover, “Wavelength and angular dependence of light scattering from beryllium: comparison of theory and experiment,” Appl. Opt. 32, 3362–3376 (1993).
[CrossRef] [PubMed]

R. D. Jacobson, S. R. Wilson, G. A. Al-Jumaily, J. R. McNeil, J. M. Bennett, L. Mattsson, “Microstructure characterization by angle-resolved scatter and comparison to measurements made by other techniques,” Appl. Opt. 31, 1426–1435 (1992).
[CrossRef] [PubMed]

J. M. Bennett, J. H. Dancy, “Stylus profiling instrument for measuring statistical properties of smooth optical surfaces,” Appl. Opt. 20, 1785–1802 (1981).
[CrossRef] [PubMed]

J. M. Elson, J. M. Bennett, “Vector scattering theory,” Opt. Eng. 18, 116–124 (1979).
[CrossRef]

J. M. Bennett, “Surface roughness measurement,” in Optical Measurement Techniques and Applications, P. K. Rastogi, ed. (Artech House, Norwood, Mass., 1997), Chap. 12, pp. 341–367.

J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering, 2nd ed. (Optical Society of America, Washington, D.C., 1999), Chap. 3 and references therein.

Binnig, G.

G. Binnig, C. F. Quate, Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[CrossRef] [PubMed]

G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[CrossRef]

G. Binnig, H. Rohrer, “Scanning tunneling microscopy,” Helv. Phys. Acta 55, 726–735 (1982).

Bousquet, P.

Bristow, T.

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Power spectral densities: a multiple technique study of different Si wafer surfaces,” J. Vac. Sci. Technol.20 (Jan./Feb. 2002) (to be published).

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Round robin determination of power spectral densities of different Si wafer surfaces,” in Flatness, Roughness, and Discrete Defects Characterization for Computer Disks, Wafers, and Flat Panel Displays II, J. C. Stover, ed., Proc. SPIE3275, 26–36 (1998).
[CrossRef]

Chim, S.

Church, E. L.

E. L. Church, “Fractal surface finish,” Appl. Opt. 27, 1518–1526 (1988).
[CrossRef] [PubMed]

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).
[CrossRef]

E. L. Church, P. Z. Takacs, “BASIC program for power spectrum estimation,” Informal Rep. 490.35 (Brookhaven National Laboratory, Upton, N.Y., 1993).

E. L. Church, P. Z. Takacs, “The optimal estimation of finish parameters,” in Optical Scatter: Applications, Measurement, and Theory, J. C. Stover, ed., Proc. SPIE1530, 71–78 (1991).
[CrossRef]

Cohen, F.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Czarnetzki, N.

J. Neubert, T. Seifert, N. Czarnetzki, T. Weigel, “Fully automated angle resolved scatterometer,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baeumen, E. Sein, eds., Proc. SPIE2210, 543–552 (1994).
[CrossRef]

Dancy, J. H.

Davidson, M.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Detrio, J. A.

J. A. Detrio, S. M. Miner, “Standardized total integrated scatter measurements of optical surfaces,” Opt. Eng. 24, 419–422 (1985).
[CrossRef]

Deumie, C.

Duparré, A.

P. Kadkhoda, A. Müller, D. Ristau, A. Duparré, S. Gliech, H. Lauth, U. Schuhmann, N. Reng, M. Tilsch, R. Schuhmann, C. Amra, C. Deumie, C. Jolie, H. Kessler, T. Lindström, C.-G. Ribbing, J. M. Bennett, “International round-robin experiment to test the International Organization for Standardization total-scattering draft standard,” Appl. Opt. 39, 3321–3332 (2000).
[CrossRef]

A. Duparré, S. Jakobs, “Combination of surface characterization techniques for investigating optical thin-film components,” Appl. Opt. 35, 5052–5058 (1996).
[CrossRef] [PubMed]

C. Ruppe, A. Duparré, “Roughness analysis of optical films and substrates by atomic force microscopy,” Thin Solid Films 288, 8–13 (1996).
[CrossRef]

A. Duparré, C. Ruppe, K. A. Pischow, M. Adamik, P. B. Barna, “Atomic force microscopy on cross-sections of optical coatings: a new method,” Thin Solid Films 261, 70–75 (1995).

A. Duparré, S. Gliech, J. Steinert, “Light scattering of UV-optical components,” in Proceedings of the Fifth International Workshop on Laser Beam and Optics Characterization, (LBOC 5) (VDI Technologiezentrum, Düsseldorf, Germany, 2000), pp. 272–282.

A. Duparré, S. Gliech, “Quality assessment from supersmooth to rough surfaces by multiple wavelength light scattering measurement,” in Scattering and Surface Roughness, Z. Gu, A. A. Maradudin, eds., Proc. SPIE3141, 57–64 (1997).
[CrossRef]

S. Gliech, J. Steinert, M. Flemming, A. Duparré, “DUV/VUV light scattering measurement of optical components for lithography applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries, G. A. Al-Jumarily, A. Duparré, B. Singh, eds., Proc. SPIE4099, 74–81 (2000).
[CrossRef]

J. Ferré-Borrull, J. Steinert, A. Duparré, “Extending the capabilities of scanning probe microscopy for microroughness analysis in surface engineering,” Surf. Interface Anal. 29, Special Issue: Papers Presented at the Fourth International Conference on the Development and Technological Application of Scanning Probe Methods33 (2002) (to be published).

A. Duparré, G. Notni, “Multi-type surface and thin film characterization using light scattering, scanning-force microscopy and white light interferometry,” in Optical Metrology, G. A. Al-Jumaily, ed., Vol. CR72 of SPIE Critical Reviews of Optical Science and Technology (SPIE, Bellingham, Wash., 1999), pp. 213–231.

Elson, J. M.

Ferré-Borrull, J.

J. Ferré-Borrull, J. Steinert, A. Duparré, “Extending the capabilities of scanning probe microscopy for microroughness analysis in surface engineering,” Surf. Interface Anal. 29, Special Issue: Papers Presented at the Fourth International Conference on the Development and Technological Application of Scanning Probe Methods33 (2002) (to be published).

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1990).

Flemming, M.

S. Gliech, J. Steinert, M. Flemming, A. Duparré, “DUV/VUV light scattering measurement of optical components for lithography applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries, G. A. Al-Jumarily, A. Duparré, B. Singh, eds., Proc. SPIE4099, 74–81 (2000).
[CrossRef]

Flory, F.

Gerber, Ch.

G. Binnig, C. F. Quate, Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[CrossRef] [PubMed]

G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[CrossRef]

Gliech, S.

P. Kadkhoda, A. Müller, D. Ristau, A. Duparré, S. Gliech, H. Lauth, U. Schuhmann, N. Reng, M. Tilsch, R. Schuhmann, C. Amra, C. Deumie, C. Jolie, H. Kessler, T. Lindström, C.-G. Ribbing, J. M. Bennett, “International round-robin experiment to test the International Organization for Standardization total-scattering draft standard,” Appl. Opt. 39, 3321–3332 (2000).
[CrossRef]

A. Duparré, S. Gliech, “Quality assessment from supersmooth to rough surfaces by multiple wavelength light scattering measurement,” in Scattering and Surface Roughness, Z. Gu, A. A. Maradudin, eds., Proc. SPIE3141, 57–64 (1997).
[CrossRef]

S. Gliech, J. Steinert, M. Flemming, A. Duparré, “DUV/VUV light scattering measurement of optical components for lithography applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries, G. A. Al-Jumarily, A. Duparré, B. Singh, eds., Proc. SPIE4099, 74–81 (2000).
[CrossRef]

A. Duparré, S. Gliech, J. Steinert, “Light scattering of UV-optical components,” in Proceedings of the Fifth International Workshop on Laser Beam and Optics Characterization, (LBOC 5) (VDI Technologiezentrum, Düsseldorf, Germany, 2000), pp. 272–282.

Hagleitner, W.

T. Abe, E. F. Steigmeier, W. Hagleitner, A. J. Pidduck, “Microroughness measurements on polished silicon wafers,” Jpn. J. Appl. Phys. 31, Part 1, 721–728 (1992).

Hobbs, D. T.

Jacobson, R. D.

Jahanmir, J.

Jakobs, S.

Jenkinson, H. A.

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).
[CrossRef]

Jolie, C.

Kadkhoda, P.

Kaufman, K.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Kessler, H.

Kienzle, O.

O. Kienzle, V. Scheuer, J. Staub, T. Tschudi, “Design of an integrated scatter instrument for measuring scatter losses of superpolished optical surfaces, application to surface characterization of transparent fused quartz substrates,” in Optical Interference Coatings, F. Abèles, ed., Proc. SPIE2253, 1131–1142 (1994).
[CrossRef]

Kino, G. S.

Lauth, H.

Lee, B. S.

Leonard, T. A.

T. A. Leonard, “Standardization of optical scatter measurements,” in Stray Radiation in Optical Systems, R. P. Breault, ed., Proc. SPIE1331, 188–194 (1990).
[CrossRef]

T. A. Leonard, M. Pantoliano, “BRDF round robin,” in Stray Light and Contamination in Optical Systems, R. P. Breault, ed., Proc. SPIE967, 226–235 (1989).
[CrossRef]

Lindström, T.

Magonov, S. N.

S. N. Magonov, M.-H. Whangbo, Surface Analysis with STM and SFM (VCH, Weinheim, Germany, 1995).
[CrossRef]

Malik, I. J.

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Round robin determination of power spectral densities of different Si wafer surfaces,” in Flatness, Roughness, and Discrete Defects Characterization for Computer Disks, Wafers, and Flat Panel Displays II, J. C. Stover, ed., Proc. SPIE3275, 26–36 (1998).
[CrossRef]

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Power spectral densities: a multiple technique study of different Si wafer surfaces,” J. Vac. Sci. Technol.20 (Jan./Feb. 2002) (to be published).

Marx, E.

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Round robin determination of power spectral densities of different Si wafer surfaces,” in Flatness, Roughness, and Discrete Defects Characterization for Computer Disks, Wafers, and Flat Panel Displays II, J. C. Stover, ed., Proc. SPIE3275, 26–36 (1998).
[CrossRef]

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Power spectral densities: a multiple technique study of different Si wafer surfaces,” J. Vac. Sci. Technol.20 (Jan./Feb. 2002) (to be published).

Mattsson, L.

Mazor, I.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

McCormick, N. J.

N. J. McCormick, “Confocal scanning optical microscopy,” in Surface Characterization, A User’s Sourcebook, D. Brune, R. Hellborg, H. J. Whitlow, O. Hunderi, eds. (Wiley-VCH, Weinheim, Germany, 1997), pp. 57–76.
[CrossRef]

McNeil, J. R.

Miner, S. M.

J. A. Detrio, S. M. Miner, “Standardized total integrated scatter measurements of optical surfaces,” Opt. Eng. 24, 419–422 (1985).
[CrossRef]

Müller, A.

Neubert, J.

J. Neubert, T. Seifert, N. Czarnetzki, T. Weigel, “Fully automated angle resolved scatterometer,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baeumen, E. Sein, eds., Proc. SPIE2210, 543–552 (1994).
[CrossRef]

Nomarski, G.

G. Nomarski, “Microinterféromètre différentiel à ondes polarisées,” J. Phys. Radium 16, 9S–13S (1955).

G. Nomarski, A. R. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall. (Paris) 52, 121–134 (1955).

Notni, G.

R.-J. Recknagel, G. Notni, “Analysis of white light interferograms using wavelet methods,” Opt. Commun. 148, 122–128 (1998).
[CrossRef]

R.-J. Recknagel, G. Notni, “Measurement and analysis of microtopography using wavelet methods,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 133–143 (1997).
[CrossRef]

A. Duparré, G. Notni, “Multi-type surface and thin film characterization using light scattering, scanning-force microscopy and white light interferometry,” in Optical Metrology, G. A. Al-Jumaily, ed., Vol. CR72 of SPIE Critical Reviews of Optical Science and Technology (SPIE, Bellingham, Wash., 1999), pp. 213–231.

Pantoliano, M.

T. A. Leonard, M. Pantoliano, “BRDF round robin,” in Stray Light and Contamination in Optical Systems, R. P. Breault, ed., Proc. SPIE967, 226–235 (1989).
[CrossRef]

Pidduck, A. J.

T. Abe, E. F. Steigmeier, W. Hagleitner, A. J. Pidduck, “Microroughness measurements on polished silicon wafers,” Jpn. J. Appl. Phys. 31, Part 1, 721–728 (1992).

Pischow, K. A.

A. Duparré, C. Ruppe, K. A. Pischow, M. Adamik, P. B. Barna, “Atomic force microscopy on cross-sections of optical coatings: a new method,” Thin Solid Films 261, 70–75 (1995).

Podlesny, J. C.

Poduje, N.

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Power spectral densities: a multiple technique study of different Si wafer surfaces,” J. Vac. Sci. Technol.20 (Jan./Feb. 2002) (to be published).

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Round robin determination of power spectral densities of different Si wafer surfaces,” in Flatness, Roughness, and Discrete Defects Characterization for Computer Disks, Wafers, and Flat Panel Displays II, J. C. Stover, ed., Proc. SPIE3275, 26–36 (1998).
[CrossRef]

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1990).

Quate, C. F.

G. Binnig, C. F. Quate, Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[CrossRef] [PubMed]

Recknagel, R.-J.

R.-J. Recknagel, G. Notni, “Analysis of white light interferograms using wavelet methods,” Opt. Commun. 148, 122–128 (1998).
[CrossRef]

R.-J. Recknagel, G. Notni, “Measurement and analysis of microtopography using wavelet methods,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 133–143 (1997).
[CrossRef]

Reng, N.

Ribbing, C.-G.

Ristau, D.

Roche, P.

Rohrer, H.

G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[CrossRef]

G. Binnig, H. Rohrer, “Scanning tunneling microscopy,” Helv. Phys. Acta 55, 726–735 (1982).

Rönnow, D.

D. Rönnow, E. Veszelei, “Design review of an instrument for spectroscopic total integrated light scattering measurements in the visible wavelength region,” Rev. Sci. Instrum. 65, 327–334 (1994).
[CrossRef]

Ruppe, C.

C. Ruppe, A. Duparré, “Roughness analysis of optical films and substrates by atomic force microscopy,” Thin Solid Films 288, 8–13 (1996).
[CrossRef]

A. Duparré, C. Ruppe, K. A. Pischow, M. Adamik, P. B. Barna, “Atomic force microscopy on cross-sections of optical coatings: a new method,” Thin Solid Films 261, 70–75 (1995).

Sarid, D.

D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces (Oxford U. Press, New York, 1991).

Scheuer, V.

O. Kienzle, V. Scheuer, J. Staub, T. Tschudi, “Design of an integrated scatter instrument for measuring scatter losses of superpolished optical surfaces, application to surface characterization of transparent fused quartz substrates,” in Optical Interference Coatings, F. Abèles, ed., Proc. SPIE2253, 1131–1142 (1994).
[CrossRef]

Schuhmann, R.

Schuhmann, U.

Scire, F.

R. Young, J. Ward, F. Scire, “The Topografiner: an instrument for measuring surface microtopography,” Rev. Sci. Instrum. 43, 999–1011 (1972).
[CrossRef]

Seifert, T.

J. Neubert, T. Seifert, N. Czarnetzki, T. Weigel, “Fully automated angle resolved scatterometer,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baeumen, E. Sein, eds., Proc. SPIE2210, 543–552 (1994).
[CrossRef]

Sheppard, C. J. R.

C. J. R. Sheppard, “Scanning optical microscopy,” in Advances in Optical and Electron Microscopy, R. Barer, V. E. Cosslett, eds. (Academic, London, 1987), Vol. 10, Chap. 1, pp. 1–98.

Staub, J.

O. Kienzle, V. Scheuer, J. Staub, T. Tschudi, “Design of an integrated scatter instrument for measuring scatter losses of superpolished optical surfaces, application to surface characterization of transparent fused quartz substrates,” in Optical Interference Coatings, F. Abèles, ed., Proc. SPIE2253, 1131–1142 (1994).
[CrossRef]

Steigmeier, E. F.

T. Abe, E. F. Steigmeier, W. Hagleitner, A. J. Pidduck, “Microroughness measurements on polished silicon wafers,” Jpn. J. Appl. Phys. 31, Part 1, 721–728 (1992).

Steinert, J.

J. Ferré-Borrull, J. Steinert, A. Duparré, “Extending the capabilities of scanning probe microscopy for microroughness analysis in surface engineering,” Surf. Interface Anal. 29, Special Issue: Papers Presented at the Fourth International Conference on the Development and Technological Application of Scanning Probe Methods33 (2002) (to be published).

A. Duparré, S. Gliech, J. Steinert, “Light scattering of UV-optical components,” in Proceedings of the Fifth International Workshop on Laser Beam and Optics Characterization, (LBOC 5) (VDI Technologiezentrum, Düsseldorf, Germany, 2000), pp. 272–282.

S. Gliech, J. Steinert, M. Flemming, A. Duparré, “DUV/VUV light scattering measurement of optical components for lithography applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries, G. A. Al-Jumarily, A. Duparré, B. Singh, eds., Proc. SPIE4099, 74–81 (2000).
[CrossRef]

Stover, J. C.

J. M. Elson, J. M. Bennett, J. C. Stover, “Wavelength and angular dependence of light scattering from beryllium: comparison of theory and experiment,” Appl. Opt. 32, 3362–3376 (1993).
[CrossRef] [PubMed]

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Round robin determination of power spectral densities of different Si wafer surfaces,” in Flatness, Roughness, and Discrete Defects Characterization for Computer Disks, Wafers, and Flat Panel Displays II, J. C. Stover, ed., Proc. SPIE3275, 26–36 (1998).
[CrossRef]

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Power spectral densities: a multiple technique study of different Si wafer surfaces,” J. Vac. Sci. Technol.20 (Jan./Feb. 2002) (to be published).

Strand, T. C.

Strausser, Y. E.

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Power spectral densities: a multiple technique study of different Si wafer surfaces,” J. Vac. Sci. Technol.20 (Jan./Feb. 2002) (to be published).

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Round robin determination of power spectral densities of different Si wafer surfaces,” in Flatness, Roughness, and Discrete Defects Characterization for Computer Disks, Wafers, and Flat Panel Displays II, J. C. Stover, ed., Proc. SPIE3275, 26–36 (1998).
[CrossRef]

Takacs, P. Z.

E. L. Church, P. Z. Takacs, “The optimal estimation of finish parameters,” in Optical Scatter: Applications, Measurement, and Theory, J. C. Stover, ed., Proc. SPIE1530, 71–78 (1991).
[CrossRef]

E. L. Church, P. Z. Takacs, “BASIC program for power spectrum estimation,” Informal Rep. 490.35 (Brookhaven National Laboratory, Upton, N.Y., 1993).

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1990).

Tilsch, M.

Tschudi, T.

O. Kienzle, V. Scheuer, J. Staub, T. Tschudi, “Design of an integrated scatter instrument for measuring scatter losses of superpolished optical surfaces, application to surface characterization of transparent fused quartz substrates,” in Optical Interference Coatings, F. Abèles, ed., Proc. SPIE2253, 1131–1142 (1994).
[CrossRef]

Veszelei, E.

D. Rönnow, E. Veszelei, “Design review of an instrument for spectroscopic total integrated light scattering measurements in the visible wavelength region,” Rev. Sci. Instrum. 65, 327–334 (1994).
[CrossRef]

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1990).

Ward, J.

R. Young, J. Ward, F. Scire, “The Topografiner: an instrument for measuring surface microtopography,” Rev. Sci. Instrum. 43, 999–1011 (1972).
[CrossRef]

Weibel, E.

G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[CrossRef]

Weigel, T.

J. Neubert, T. Seifert, N. Czarnetzki, T. Weigel, “Fully automated angle resolved scatterometer,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baeumen, E. Sein, eds., Proc. SPIE2210, 543–552 (1994).
[CrossRef]

Weill, A. R.

G. Nomarski, A. R. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall. (Paris) 52, 121–134 (1955).

Whangbo, M.-H.

S. N. Magonov, M.-H. Whangbo, Surface Analysis with STM and SFM (VCH, Weinheim, Germany, 1995).
[CrossRef]

Wilson, S. R.

Wilson, T.

T. Wilson, “Optical aspects of confocal microscopy,” in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), Chap. 3.

Young, R.

R. Young, J. Ward, F. Scire, “The Topografiner: an instrument for measuring surface microtopography,” Rev. Sci. Instrum. 43, 999–1011 (1972).
[CrossRef]

Zavada, J. M.

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).
[CrossRef]

Appl. Opt.

P. Kadkhoda, A. Müller, D. Ristau, A. Duparré, S. Gliech, H. Lauth, U. Schuhmann, N. Reng, M. Tilsch, R. Schuhmann, C. Amra, C. Deumie, C. Jolie, H. Kessler, T. Lindström, C.-G. Ribbing, J. M. Bennett, “International round-robin experiment to test the International Organization for Standardization total-scattering draft standard,” Appl. Opt. 39, 3321–3332 (2000).
[CrossRef]

J. M. Elson, J. M. Bennett, J. C. Stover, “Wavelength and angular dependence of light scattering from beryllium: comparison of theory and experiment,” Appl. Opt. 32, 3362–3376 (1993).
[CrossRef] [PubMed]

E. L. Church, “Fractal surface finish,” Appl. Opt. 27, 1518–1526 (1988).
[CrossRef] [PubMed]

A. Duparré, S. Jakobs, “Combination of surface characterization techniques for investigating optical thin-film components,” Appl. Opt. 35, 5052–5058 (1996).
[CrossRef] [PubMed]

R. D. Jacobson, S. R. Wilson, G. A. Al-Jumaily, J. R. McNeil, J. M. Bennett, L. Mattsson, “Microstructure characterization by angle-resolved scatter and comparison to measurements made by other techniques,” Appl. Opt. 31, 1426–1435 (1992).
[CrossRef] [PubMed]

J. M. Bennett, J. H. Dancy, “Stylus profiling instrument for measuring statistical properties of smooth optical surfaces,” Appl. Opt. 20, 1785–1802 (1981).
[CrossRef] [PubMed]

G. S. Kino, S. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
[CrossRef] [PubMed]

B. S. Lee, T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
[CrossRef] [PubMed]

J. M. Elson, J. M. Bennett, “Calculation of the power spectral density from surface profile data,” Appl. Opt. 34, 201–208 (1995).
[CrossRef] [PubMed]

J. M. Bennett, J. Jahanmir, J. C. Podlesny, T. L. Balter, D. T. Hobbs, “Scanning force microscope as a tool for studying optical surfaces,” Appl. Opt. 34, 213–230 (1995).
[CrossRef] [PubMed]

Helv. Phys. Acta

G. Binnig, H. Rohrer, “Scanning tunneling microscopy,” Helv. Phys. Acta 55, 726–735 (1982).

J. Opt. Soc. Am.

J. Phys. Radium

G. Nomarski, “Microinterféromètre différentiel à ondes polarisées,” J. Phys. Radium 16, 9S–13S (1955).

Jpn. J. Appl. Phys.

T. Abe, E. F. Steigmeier, W. Hagleitner, A. J. Pidduck, “Microroughness measurements on polished silicon wafers,” Jpn. J. Appl. Phys. 31, Part 1, 721–728 (1992).

Opt. Commun.

R.-J. Recknagel, G. Notni, “Analysis of white light interferograms using wavelet methods,” Opt. Commun. 148, 122–128 (1998).
[CrossRef]

Opt. Eng.

J. M. Elson, J. M. Bennett, “Vector scattering theory,” Opt. Eng. 18, 116–124 (1979).
[CrossRef]

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).
[CrossRef]

J. A. Detrio, S. M. Miner, “Standardized total integrated scatter measurements of optical surfaces,” Opt. Eng. 24, 419–422 (1985).
[CrossRef]

Phys. Rev. Lett.

G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[CrossRef]

G. Binnig, C. F. Quate, Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[CrossRef] [PubMed]

Rev. Metall. (Paris)

G. Nomarski, A. R. Weill, “Application à la métallographie des méthodes interférentielles à deux ondes polarisées,” Rev. Metall. (Paris) 52, 121–134 (1955).

Rev. Sci. Instrum.

R. Young, J. Ward, F. Scire, “The Topografiner: an instrument for measuring surface microtopography,” Rev. Sci. Instrum. 43, 999–1011 (1972).
[CrossRef]

D. Rönnow, E. Veszelei, “Design review of an instrument for spectroscopic total integrated light scattering measurements in the visible wavelength region,” Rev. Sci. Instrum. 65, 327–334 (1994).
[CrossRef]

Thin Solid Films

A. Duparré, C. Ruppe, K. A. Pischow, M. Adamik, P. B. Barna, “Atomic force microscopy on cross-sections of optical coatings: a new method,” Thin Solid Films 261, 70–75 (1995).

C. Ruppe, A. Duparré, “Roughness analysis of optical films and substrates by atomic force microscopy,” Thin Solid Films 288, 8–13 (1996).
[CrossRef]

Other

Taylor Hobson Limited, P.O. Box 36, 2 New Star Road, Leicester LE4 7JQ UK (U.S. address: 2100 Golf Road, Suite 350, Rolling Meadows, Ill. 60008-4231).

R.-J. Recknagel, G. Notni, “Measurement and analysis of microtopography using wavelet methods,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 133–143 (1997).
[CrossRef]

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

See Ref. 1, pp. 7–9.

D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces (Oxford U. Press, New York, 1991).

S. N. Magonov, M.-H. Whangbo, Surface Analysis with STM and SFM (VCH, Weinheim, Germany, 1995).
[CrossRef]

Digital Instruments, a division of Veeco Process Metrology, 112 Robin Hill Road, Goleta, Calif. 93117; http://www.di.com .

Standard Practice for Angle Resolved Optical Scatter Measurements on Specular or Diffuse Surfaces, ASTM Doc. E1392–90 (American Society for Testing and Materials, Philadelphia, Pa., 1990).

T. A. Leonard, M. Pantoliano, “BRDF round robin,” in Stray Light and Contamination in Optical Systems, R. P. Breault, ed., Proc. SPIE967, 226–235 (1989).
[CrossRef]

T. A. Leonard, “Standardization of optical scatter measurements,” in Stray Radiation in Optical Systems, R. P. Breault, ed., Proc. SPIE1331, 188–194 (1990).
[CrossRef]

See Ref. 1, pp. 58–64.

J. C. Stover, ed., Optical Scattering: Measurement and Analysis, 2nd ed., Vol. PM24 of the Press Monographs (SPIE, Bellingham, Wash., 1995).

E. L. Church, P. Z. Takacs, “The optimal estimation of finish parameters,” in Optical Scatter: Applications, Measurement, and Theory, J. C. Stover, ed., Proc. SPIE1530, 71–78 (1991).
[CrossRef]

A. Duparré, G. Notni, “Multi-type surface and thin film characterization using light scattering, scanning-force microscopy and white light interferometry,” in Optical Metrology, G. A. Al-Jumaily, ed., Vol. CR72 of SPIE Critical Reviews of Optical Science and Technology (SPIE, Bellingham, Wash., 1999), pp. 213–231.

J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering, 2nd ed. (Optical Society of America, Washington, D.C., 1999), Chap. 3 and references therein.

Standard Test Method for Measuring the Effective Surface Roughness of Optical Components by Total Integrated Scattering, ASTM Doc. F1048–87 (American Society for Testing and Materials, Philadelphia, Pa., 1987).

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Round robin determination of power spectral densities of different Si wafer surfaces,” in Flatness, Roughness, and Discrete Defects Characterization for Computer Disks, Wafers, and Flat Panel Displays II, J. C. Stover, ed., Proc. SPIE3275, 26–36 (1998).
[CrossRef]

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, J. C. Stover, “Power spectral densities: a multiple technique study of different Si wafer surfaces,” J. Vac. Sci. Technol.20 (Jan./Feb. 2002) (to be published).

A. Duparré, S. Gliech, “Quality assessment from supersmooth to rough surfaces by multiple wavelength light scattering measurement,” in Scattering and Surface Roughness, Z. Gu, A. A. Maradudin, eds., Proc. SPIE3141, 57–64 (1997).
[CrossRef]

S. Gliech, J. Steinert, M. Flemming, A. Duparré, “DUV/VUV light scattering measurement of optical components for lithography applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries, G. A. Al-Jumarily, A. Duparré, B. Singh, eds., Proc. SPIE4099, 74–81 (2000).
[CrossRef]

We used 99% reflectance Spectralon, Labsphere Inc., subsidiary of X-Rite, Inc., P.O. Box 70, North Sutton, N.H. 03260-0070; http://www.labsphere.com .

E. L. Church, P. Z. Takacs, “BASIC program for power spectrum estimation,” Informal Rep. 490.35 (Brookhaven National Laboratory, Upton, N.Y., 1993).

J. Ferré-Borrull, J. Steinert, A. Duparré, “Extending the capabilities of scanning probe microscopy for microroughness analysis in surface engineering,” Surf. Interface Anal. 29, Special Issue: Papers Presented at the Fourth International Conference on the Development and Technological Application of Scanning Probe Methods33 (2002) (to be published).

C. J. R. Sheppard, “Scanning optical microscopy,” in Advances in Optical and Electron Microscopy, R. Barer, V. E. Cosslett, eds. (Academic, London, 1987), Vol. 10, Chap. 1, pp. 1–98.

T. Wilson, “Optical aspects of confocal microscopy,” in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), Chap. 3.

N. J. McCormick, “Confocal scanning optical microscopy,” in Surface Characterization, A User’s Sourcebook, D. Brune, R. Hellborg, H. J. Whitlow, O. Hunderi, eds. (Wiley-VCH, Weinheim, Germany, 1997), pp. 57–76.
[CrossRef]

Carl Zeiss Jena GmbH, Carl-Zeiss Promenade 1a, D-07745 Jena, Germany; http://www.zeiss.de .

See Ref. 1, pp. 28–37, 62–67.

J. Neubert, T. Seifert, N. Czarnetzki, T. Weigel, “Fully automated angle resolved scatterometer,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-den-Baeumen, E. Sein, eds., Proc. SPIE2210, 543–552 (1994).
[CrossRef]

A. Duparré, S. Gliech, J. Steinert, “Light scattering of UV-optical components,” in Proceedings of the Fifth International Workshop on Laser Beam and Optics Characterization, (LBOC 5) (VDI Technologiezentrum, Düsseldorf, Germany, 2000), pp. 272–282.

Optics and Optical Instruments—Lasers and Laser-Related Equipment—Test Methods for Radiation Scattered by Optical Components, ISO/FDIS 13696, Technical Committee ISO/TC 172/SC9/WG6, Final Draft Standard (International Organization for Standardization, Geneva, Switzerland, 1998).

See Ref. 1, pp. 66–67.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1990).

O. Kienzle, V. Scheuer, J. Staub, T. Tschudi, “Design of an integrated scatter instrument for measuring scatter losses of superpolished optical surfaces, application to surface characterization of transparent fused quartz substrates,” in Optical Interference Coatings, F. Abèles, ed., Proc. SPIE2253, 1131–1142 (1994).
[CrossRef]

J. M. Bennett, “Surface roughness measurement,” in Optical Measurement Techniques and Applications, P. K. Rastogi, ed. (Artech House, Norwood, Mass., 1997), Chap. 12, pp. 341–367.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (26)

Fig. 1
Fig. 1

Schematic diagram of the instrument to measure ARS.

Fig. 2
Fig. 2

Schematic diagram of the instrument to measure TS.

Fig. 3
Fig. 3

10 µm × 10 µm AFM image of the Zerodur 665 surface.

Fig. 4
Fig. 4

10 µm × 10 µm AFM image of the silicon carbide surface.

Fig. 5
Fig. 5

10 µm × 10 µm AFM image of the sapphire surface.

Fig. 6
Fig. 6

10 µm × 10 µm AFM image of the silicon wafer 3 surface.

Fig. 7
Fig. 7

10 µm × 10 µm AFM image of the polished fused-silica SQ1 surface.

Fig. 8
Fig. 8

Nomarski micrograph of the electroplated gold A surface.

Fig. 9
Fig. 9

280 µm × 280 µm WLI image of the gold A surface.

Fig. 10
Fig. 10

Nomarski micrograph of the diamond-turned brass surface.

Fig. 11
Fig. 11

280 µm × 280 µm WLI image of the diamond-turned brass surface.

Fig. 12
Fig. 12

280 µm × 280 µm WLI image of the ground fused-silica SQ1 surface.

Fig. 13
Fig. 13

LSM image of the ground fused-silica SQ1 surface: (a) 260 µm × 260 µm and (b) 650 µm × 650 µm image areas.

Fig. 14
Fig. 14

800-µm Talystep profile of the sapphire surface, 0.34-nm rms roughness.

Fig. 15
Fig. 15

800-µm Talystep profile of the silicon wafer 3 surface, 0.53-nm rms roughness.

Fig. 16
Fig. 16

800-µm Talystep profile of the electroplated gold A surface, 7.66-nm rms roughness.

Fig. 17
Fig. 17

800-µm Talystep profile of the diamond-turned brass surface, 113.3-nm rms roughness.

Fig. 18
Fig. 18

PSDs for fused-silica A.

Fig. 19
Fig. 19

PSDs for Zerodur 665.

Fig. 20
Fig. 20

PSDs for silicon carbide.

Fig. 21
Fig. 21

PSDs for sapphire.

Fig. 22
Fig. 22

PSDs for silicon wafer 3.

Fig. 23
Fig. 23

PSDs for polished fused-silica SQ1.

Fig. 24
Fig. 24

PSDs for gold A.

Fig. 25
Fig. 25

PSDs for diamond-turned brass.

Fig. 26
Fig. 26

PSDs for ground fused-silica SQ1.

Tables (7)

Tables Icon

Table 1 Samples Used in the Characterization Measurements

Tables Icon

Table 2 Measured Average rms Roughnesses (nm) Obtained with an AFM and a Talystep Mechanical Profiler

Tables Icon

Table 3 Measured Average rms Roughnesses (nm) Obtained with a WLI and a LSM

Tables Icon

Table 4 Surface Spatial Frequency and Surface Spatial Wavelength Ranges for the Raw Measurements (the Theoretical Ranges of the Instruments are Larger) and for the PSD Curves for all Measuring Instruments

Tables Icon

Table 5 Average rms Roughnesses (nm) Calculated from PSDs for Bands A and B and rms Roughnesses (nm) Calculated from TS measurements

Tables Icon

Table 6 Average rms Roughnesses (nm) Calculated from PSDs for Band C

Tables Icon

Table 7 Average rms Roughnesses (nm) Calculated from PSDs for Band D

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

PSDfx, fy=limL1L2-L/2L/2-L/2L/2 hx, y×exp-2πifxx+fyydxdy2,
PSDfxNm=τ0Nn=0N-1 hxn×exp-i2πmn/N2Km,
f=fx2+fy21/2,θ=tan-1fyfx.
PSD2-Df=12π02πPSDf, θdθ.
PSDcombinedf=i=1MPSDifwif1i=1M wif,
σrms,1-D2=fminfmaxPSD1-Dfdf,σrms,2-D2=2π fminfmaxPSD2-Dffdf,
PSD2-Df=PSD1-Df2πf,
ARSθs, ϕs=1PidPdΩ=16π2λ4cos θi cos2θs×Qθs, ϕsPSD2-Dfx, fy,
logPSDf=logPSDfA+logPSDfB-logPSDfAlogfB-logfA×logf-logfA.
σrms=λ/4πTIS.

Metrics