Abstract

A technique for fabricating arrays of graded reflectivity micromirrors with diameters as small as 25 µm is reported. It is based on laser-induced physical vapor deposition through microholes on a thin free-standing noncontact mask, and it is suitable for applications in micro-optics and solid-state laser technology.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Lavigne, N. McCarthy, J. G. Demers, “Design and characterization of complementary Gaussian reflectivity mirrors,” Appl. Opt. 24, 2581–2586 (1985).
    [CrossRef] [PubMed]
  2. P. Lavigne, N. McCarthy, “Reflectivity mirrors and transversely variable transmission apertures with an azimuthal symmetry,” Canadian patent1,298,724 (14April1992).
  3. C. Zizzo, C. Arnone, C. Calì, S. Sciortino, “Fabrication and characterization of tuned Gaussian mirrors for the visible and the near infrared,” Opt. Lett. 13, 342–344 (1988).
    [CrossRef] [PubMed]
  4. G. Emiliani, A. Piegari, S. De Silvestri, P. Laporta, V. Magni, “Optical coatings with variable reflectance for laser mirrors,” Appl. Opt. 28, 2832–2837 (1989).
    [CrossRef] [PubMed]
  5. S. G. Lukishova, S. A. Chetkin, N. V. Mettus, E. A. Magulariya, “Techniques for fabrication of multilayer dielectric graded-reflectivity mirrors and their use in enhancement of the brightness of the radiation from a multimode Nd:YAG laser with a stable resonator,” Quantum Electron. 26, 1014–1017 (1996).
    [CrossRef]
  6. M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29, 819–866 (1997).
    [CrossRef]
  7. K. J. Snell, G. Duplain, A. Parent, B. Labranche, P. Galarneau, “Diffraction-limited Nd:glass and alexandrite lasers using graded reflectivity mirror unstable resonators,” in Solid State Lasers II, G. Dube, ed., Proc. SPIE1410, 99–106 (1991).
    [CrossRef]
  8. G. Duplain, P. G. Verly, J. A. Dobrowolski, A. Waldorf, S. Bussiere, “Graded reflectance mirrors for beam quality control in laser resonators,” Appl. Opt. 32, 1145–1143 (1992).
    [CrossRef]
  9. G. Lullo, C. G. Giaconia, P. Cusumano, C. Arnone are preparing a manuscript to be called “Micropatterned free-standing shadow masks for PVD applications.” The masks are also commercially available on the web at www.microtechweb.com/electroforming .
  10. R. Glang, L. V. Gregor, “Generation of patterns in thin films,” in Handbook of Thin Films Technology, R. Glang, L. V. Gregor, eds. (McGraw-Hill, New York, 1970), Chap. 7, pp. 1–10.
  11. MACLEOD, thin-film design software, release 3.1 (1994). An updated version of this software can be obtained at http://www.thinfilmcenter.com .
  12. H. A. Macleod, Thin Film Optical Filters (Hilger, Bristol, UK, 1986).
    [CrossRef]
  13. V. Daneu, “Optical thickness monitor for thin film deposition,” Appl. Opt. 14, 962–969 (1975).
    [CrossRef] [PubMed]
  14. Y. A. Wu, W. Yuen, C. J. Chang-Hasnain, “Effect of spatial profile of gain and reflectivity in oxide-confined VCSELs,” in Proceedings of the IEEE Lasers and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 1, pp. 209–210.
    [CrossRef]

1997 (1)

M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29, 819–866 (1997).
[CrossRef]

1996 (1)

S. G. Lukishova, S. A. Chetkin, N. V. Mettus, E. A. Magulariya, “Techniques for fabrication of multilayer dielectric graded-reflectivity mirrors and their use in enhancement of the brightness of the radiation from a multimode Nd:YAG laser with a stable resonator,” Quantum Electron. 26, 1014–1017 (1996).
[CrossRef]

1992 (1)

1989 (1)

1988 (1)

1985 (1)

1975 (1)

Arnone, C.

C. Zizzo, C. Arnone, C. Calì, S. Sciortino, “Fabrication and characterization of tuned Gaussian mirrors for the visible and the near infrared,” Opt. Lett. 13, 342–344 (1988).
[CrossRef] [PubMed]

G. Lullo, C. G. Giaconia, P. Cusumano, C. Arnone are preparing a manuscript to be called “Micropatterned free-standing shadow masks for PVD applications.” The masks are also commercially available on the web at www.microtechweb.com/electroforming .

Bussiere, S.

Calì, C.

Chang-Hasnain, C. J.

Y. A. Wu, W. Yuen, C. J. Chang-Hasnain, “Effect of spatial profile of gain and reflectivity in oxide-confined VCSELs,” in Proceedings of the IEEE Lasers and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 1, pp. 209–210.
[CrossRef]

Chetkin, S. A.

S. G. Lukishova, S. A. Chetkin, N. V. Mettus, E. A. Magulariya, “Techniques for fabrication of multilayer dielectric graded-reflectivity mirrors and their use in enhancement of the brightness of the radiation from a multimode Nd:YAG laser with a stable resonator,” Quantum Electron. 26, 1014–1017 (1996).
[CrossRef]

Cusumano, P.

G. Lullo, C. G. Giaconia, P. Cusumano, C. Arnone are preparing a manuscript to be called “Micropatterned free-standing shadow masks for PVD applications.” The masks are also commercially available on the web at www.microtechweb.com/electroforming .

Daneu, V.

De Silvestri, S.

Demers, J. G.

Dobrowolski, J. A.

Duplain, G.

G. Duplain, P. G. Verly, J. A. Dobrowolski, A. Waldorf, S. Bussiere, “Graded reflectance mirrors for beam quality control in laser resonators,” Appl. Opt. 32, 1145–1143 (1992).
[CrossRef]

K. J. Snell, G. Duplain, A. Parent, B. Labranche, P. Galarneau, “Diffraction-limited Nd:glass and alexandrite lasers using graded reflectivity mirror unstable resonators,” in Solid State Lasers II, G. Dube, ed., Proc. SPIE1410, 99–106 (1991).
[CrossRef]

Emiliani, G.

Galarneau, P.

K. J. Snell, G. Duplain, A. Parent, B. Labranche, P. Galarneau, “Diffraction-limited Nd:glass and alexandrite lasers using graded reflectivity mirror unstable resonators,” in Solid State Lasers II, G. Dube, ed., Proc. SPIE1410, 99–106 (1991).
[CrossRef]

Giaconia, C. G.

G. Lullo, C. G. Giaconia, P. Cusumano, C. Arnone are preparing a manuscript to be called “Micropatterned free-standing shadow masks for PVD applications.” The masks are also commercially available on the web at www.microtechweb.com/electroforming .

Glang, R.

R. Glang, L. V. Gregor, “Generation of patterns in thin films,” in Handbook of Thin Films Technology, R. Glang, L. V. Gregor, eds. (McGraw-Hill, New York, 1970), Chap. 7, pp. 1–10.

Gregor, L. V.

R. Glang, L. V. Gregor, “Generation of patterns in thin films,” in Handbook of Thin Films Technology, R. Glang, L. V. Gregor, eds. (McGraw-Hill, New York, 1970), Chap. 7, pp. 1–10.

Labranche, B.

K. J. Snell, G. Duplain, A. Parent, B. Labranche, P. Galarneau, “Diffraction-limited Nd:glass and alexandrite lasers using graded reflectivity mirror unstable resonators,” in Solid State Lasers II, G. Dube, ed., Proc. SPIE1410, 99–106 (1991).
[CrossRef]

Laporta, P.

Lavigne, P.

P. Lavigne, N. McCarthy, J. G. Demers, “Design and characterization of complementary Gaussian reflectivity mirrors,” Appl. Opt. 24, 2581–2586 (1985).
[CrossRef] [PubMed]

P. Lavigne, N. McCarthy, “Reflectivity mirrors and transversely variable transmission apertures with an azimuthal symmetry,” Canadian patent1,298,724 (14April1992).

Lukishova, S. G.

S. G. Lukishova, S. A. Chetkin, N. V. Mettus, E. A. Magulariya, “Techniques for fabrication of multilayer dielectric graded-reflectivity mirrors and their use in enhancement of the brightness of the radiation from a multimode Nd:YAG laser with a stable resonator,” Quantum Electron. 26, 1014–1017 (1996).
[CrossRef]

Lullo, G.

G. Lullo, C. G. Giaconia, P. Cusumano, C. Arnone are preparing a manuscript to be called “Micropatterned free-standing shadow masks for PVD applications.” The masks are also commercially available on the web at www.microtechweb.com/electroforming .

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (Hilger, Bristol, UK, 1986).
[CrossRef]

Magni, V.

Magulariya, E. A.

S. G. Lukishova, S. A. Chetkin, N. V. Mettus, E. A. Magulariya, “Techniques for fabrication of multilayer dielectric graded-reflectivity mirrors and their use in enhancement of the brightness of the radiation from a multimode Nd:YAG laser with a stable resonator,” Quantum Electron. 26, 1014–1017 (1996).
[CrossRef]

McCarthy, N.

P. Lavigne, N. McCarthy, J. G. Demers, “Design and characterization of complementary Gaussian reflectivity mirrors,” Appl. Opt. 24, 2581–2586 (1985).
[CrossRef] [PubMed]

P. Lavigne, N. McCarthy, “Reflectivity mirrors and transversely variable transmission apertures with an azimuthal symmetry,” Canadian patent1,298,724 (14April1992).

Mettus, N. V.

S. G. Lukishova, S. A. Chetkin, N. V. Mettus, E. A. Magulariya, “Techniques for fabrication of multilayer dielectric graded-reflectivity mirrors and their use in enhancement of the brightness of the radiation from a multimode Nd:YAG laser with a stable resonator,” Quantum Electron. 26, 1014–1017 (1996).
[CrossRef]

Morin, M.

M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29, 819–866 (1997).
[CrossRef]

Parent, A.

K. J. Snell, G. Duplain, A. Parent, B. Labranche, P. Galarneau, “Diffraction-limited Nd:glass and alexandrite lasers using graded reflectivity mirror unstable resonators,” in Solid State Lasers II, G. Dube, ed., Proc. SPIE1410, 99–106 (1991).
[CrossRef]

Piegari, A.

Sciortino, S.

Snell, K. J.

K. J. Snell, G. Duplain, A. Parent, B. Labranche, P. Galarneau, “Diffraction-limited Nd:glass and alexandrite lasers using graded reflectivity mirror unstable resonators,” in Solid State Lasers II, G. Dube, ed., Proc. SPIE1410, 99–106 (1991).
[CrossRef]

Verly, P. G.

Waldorf, A.

Wu, Y. A.

Y. A. Wu, W. Yuen, C. J. Chang-Hasnain, “Effect of spatial profile of gain and reflectivity in oxide-confined VCSELs,” in Proceedings of the IEEE Lasers and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 1, pp. 209–210.
[CrossRef]

Yuen, W.

Y. A. Wu, W. Yuen, C. J. Chang-Hasnain, “Effect of spatial profile of gain and reflectivity in oxide-confined VCSELs,” in Proceedings of the IEEE Lasers and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 1, pp. 209–210.
[CrossRef]

Zizzo, C.

Appl. Opt. (4)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29, 819–866 (1997).
[CrossRef]

Quantum Electron. (1)

S. G. Lukishova, S. A. Chetkin, N. V. Mettus, E. A. Magulariya, “Techniques for fabrication of multilayer dielectric graded-reflectivity mirrors and their use in enhancement of the brightness of the radiation from a multimode Nd:YAG laser with a stable resonator,” Quantum Electron. 26, 1014–1017 (1996).
[CrossRef]

Other (7)

P. Lavigne, N. McCarthy, “Reflectivity mirrors and transversely variable transmission apertures with an azimuthal symmetry,” Canadian patent1,298,724 (14April1992).

G. Lullo, C. G. Giaconia, P. Cusumano, C. Arnone are preparing a manuscript to be called “Micropatterned free-standing shadow masks for PVD applications.” The masks are also commercially available on the web at www.microtechweb.com/electroforming .

R. Glang, L. V. Gregor, “Generation of patterns in thin films,” in Handbook of Thin Films Technology, R. Glang, L. V. Gregor, eds. (McGraw-Hill, New York, 1970), Chap. 7, pp. 1–10.

MACLEOD, thin-film design software, release 3.1 (1994). An updated version of this software can be obtained at http://www.thinfilmcenter.com .

H. A. Macleod, Thin Film Optical Filters (Hilger, Bristol, UK, 1986).
[CrossRef]

K. J. Snell, G. Duplain, A. Parent, B. Labranche, P. Galarneau, “Diffraction-limited Nd:glass and alexandrite lasers using graded reflectivity mirror unstable resonators,” in Solid State Lasers II, G. Dube, ed., Proc. SPIE1410, 99–106 (1991).
[CrossRef]

Y. A. Wu, W. Yuen, C. J. Chang-Hasnain, “Effect of spatial profile of gain and reflectivity in oxide-confined VCSELs,” in Proceedings of the IEEE Lasers and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 1, pp. 209–210.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the laser PVD system with fixed shadow mask. For clarity, a single large hole in the mask, instead of the actual microhole array, is shown here.

Fig. 2
Fig. 2

Photographs of ZnS deposits upon BK7 glass: (a) array obtained from 50-µm apertures with 120-µm pitch and (b) single deposits that correspond to aperture sizes of 50 (left) and 20 (right) µm and were taken in green light.

Fig. 3
Fig. 3

Thickness profiles, as measured by a Dektak 3030 microprofilometer, of graded layers of ZnS obtained with mask-to-substrate distances of (a) 2 mm and (b) 5 mm for aperture diameters in the mask ranging from 20 to 50 µm.

Fig. 4
Fig. 4

Measurement setup for reflectivity profiling and mirror sizing. The sampling system is made from a digital oscilloscope and a PC interface.

Fig. 5
Fig. 5

Typical reflectivity profile for a ZnS graded layer deposited from a 30-µm aperture in the mask with b = 2 mm. Note that the maximum thickness at the center is slightly greater than λ/2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

tr=K 2rsa+b0rrminK a/brh-r+rs+rha+brmin<rrmax0r>rmax,
rmin=1+barh-ba rs,rmax=rmin+2 ba rs,
Rm=1-n2n1nHnL2m1+n2n1nHnL2m2,

Metrics