Abstract

The transverse wave condition is not applicable to the refracted electromagnetic wave within the context of geometrical optics when absorption is involved. Either the TM or the TE wave condition can be assumed for the wave to locally satisfy the electromagnetic boundary condition in a ray-tracing calculation. The assumed wave mode affects both the reflection and the refraction coefficients. As a result, nonunique solutions for these coefficients are inevitable. In this study the appropriate solutions for the Fresnel reflection–refraction coefficients are identified in light-scattering calculations based on the ray-tracing technique. In particular, a 3 × 2 refraction or transmission matrix is derived to account for the inhomogeneity of the refracted wave in an absorbing medium. An asymptotic solution that completely includes the effect of medium absorption on Fresnel coefficients is obtained for the scattering properties of a general polyhedral particle. Numerical results are presented for hexagonal plates and columns with both preferred and random orientations.

© 2001 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Mishchenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, San Diego, Calif., 1999).
  2. E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
    [CrossRef]
  3. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for light calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [CrossRef]
  4. P. Yang, K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996).
    [CrossRef]
  5. W.-B. Sun, Q. Fu, Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141–3151 (1999).
    [CrossRef]
  6. G. Mie, “Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
    [CrossRef]
  7. S. Asano, M. Sato, “Light scattering by randomly oriented spheroidal particles,” Appl. Opt. 19, 962–974 (1980).
    [CrossRef] [PubMed]
  8. V. G. Farafonov, N. V. Voshchinnikov, V. V. Somsikov, “Light scattering by a core-mantle spheroidal particle,” Appl. Opt. 35, 5412–5426 (1996).
    [CrossRef] [PubMed]
  9. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991).
    [CrossRef]
  10. M. I. Mishchenko, “Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength,” Appl. Opt. 32, 623–625 (1993).
  11. M. I. Mishchenko, A. Macke, “How big should hexagonal ice crystals be to produce halos?” Appl. Opt. 38, 1626–1629 (1999).
    [CrossRef]
  12. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. I. Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
    [CrossRef]
  13. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993).
    [CrossRef] [PubMed]
  14. J. A. Lock, “Ray scattering by an arbitrarily oriented spheroid. I. Diffraction and specular reflection. II. Transmission and cross-polarization effects,” Appl. Opt. 35, 500–531 (1996).
    [CrossRef] [PubMed]
  15. K. Muinonen, K. Lumme, J. Peltoniemi, W. M. Irvine, “Light scattering by randomly oriented crystals,” Appl. Opt. 28, 3051–3060 (1989).
    [CrossRef] [PubMed]
  16. A. Arking, J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Clim. Appl. Meteorol. 24, 322–333 (1985).
    [CrossRef]
  17. M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–26 (1992).
    [CrossRef]
  18. W. L. Smith, H. E. Revercomb, R. O. Knuteson, F. A. Best, R. Dedecker, H. B. Howell, H. M. Woolf, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. I. The high resolution interferometer sounder (HIS) systems,” J. Atmos. Sci. 52, 4238–4245 (1995).
    [CrossRef]
  19. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  20. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).
  21. J. Zhang, L. Xu, “Light scattering by absorbing hexagonal ice crystals in cirrus clouds,” Appl. Opt. 34, 5867–5874 (1995).
    [CrossRef] [PubMed]
  22. P. Yang, K. N. Liou, “Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models,” J. Opt. Soc. Am. A 12, 162–176 (1995).
    [CrossRef]
  23. W. P. Arnott, Y. Y. Dong, J. Hallett, “Extinction efficiency in the infrared (2–18 µm) of laboratory ice clouds: observations of scattering minima in the Christiansen bands of ice,” Appl. Opt. 34, 541–551 (1995).
    [CrossRef] [PubMed]
  24. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  25. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  26. P. Yang, K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223–248 (1998).
  27. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980).
    [CrossRef] [PubMed]
  28. K. N. Liou, J. E. Hansen, “Intensity and polarization for single scattering by polydisperse spheres: a comparison of ray optics and Mie theory,” J. Atmos. Sci. 28, 995–1004 (1971).
    [CrossRef]
  29. A. Macke, M. I. Mishchenko, K. Muinonen, B. E. Carlson, “Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method,” Opt. Lett. 20, 1934–1936 (1995).
    [CrossRef] [PubMed]
  30. M. I. Mishchenko, A. Macke, “Incorporation of physical optics effect and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission,” J. Geophys. Res. 103, 1799–1805 (1998).
    [CrossRef]
  31. P. Yang, K. N. Liou, “Light scattering by hexagonal ice crystals: solution by a ray-by-ray integration algorithm,” J. Opt. Soc. Am. A 14, 2278–2289 (1997).
    [CrossRef]
  32. P. Minnis, K. N. Liou, Y. Takano, “Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. I. Parameterization of radiance fields,” J. Atmos. Sci. 50, 1279–1304 (1993).
    [CrossRef]
  33. B. A. Baum, R. F. Arduini, B. A. Wielicki, P. Minnis, S.-C. Tsay, “Multilevel cloud retrieval using multispectral HIRS and AVHRR data: nighttime oceanic analysis,” J. Geophys. Res. 99, 5499–5514 (1994).
    [CrossRef]
  34. Q. Han, W. B. Rossow, J. Chou, K-S. Kuo, R. M. Welch, “The effect of aspect ratio and surface roughness on satellite retrieval of ice-cloud properties,” J. Quant. Spectrosc. Radiat. Transfer 63, 559–583 (1999).
    [CrossRef]
  35. M.-D. Chou, K-T. Lee, S.-C. Tsay, Q. Fu, “Parameterization for cloud longwave scattering for use in atmosphere models,” J. Climate 12, 159–169 (1999).
    [CrossRef]
  36. D. L. Mitchell, A. Macke, Y. Liu, “Modeling cirrus clouds. II. Treatment of radiative properties,” J. Atmos. Sci. 53, 2967–2988 (1996).
    [CrossRef]
  37. Q. Fu, P. Yang, W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 11, 2223–2237 (1998).
    [CrossRef]
  38. T. C. Grenfell, S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31,697–31,709 (1999).
    [CrossRef]
  39. D. L. Mitchell, “Parameterization of the Mie extinction and absorption coefficients for water clouds,” J. Atmos. Sci. 57, 1311–1326 (2000).
    [CrossRef]
  40. A. J. Baran, S. Havemann, “Rapid computation of the optical properties of hexagonal columns using complex angular momentum theory,” J. Quant. Spectrosc. Radiat. Transfer 63, 499–519 (1999).
    [CrossRef]
  41. S. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
    [CrossRef] [PubMed]
  42. Y. Takano, K. N. Liou, “Radiative transfer in cirrus clouds. II. Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
    [CrossRef]
  43. K.-D. Rockwitz, “Scattering properties of horizontally oriented ice crystal columns in cirrus clouds,” Appl. Opt. 28, 4103–4110 (1989).
    [CrossRef] [PubMed]

2000

D. L. Mitchell, “Parameterization of the Mie extinction and absorption coefficients for water clouds,” J. Atmos. Sci. 57, 1311–1326 (2000).
[CrossRef]

1999

A. J. Baran, S. Havemann, “Rapid computation of the optical properties of hexagonal columns using complex angular momentum theory,” J. Quant. Spectrosc. Radiat. Transfer 63, 499–519 (1999).
[CrossRef]

Q. Han, W. B. Rossow, J. Chou, K-S. Kuo, R. M. Welch, “The effect of aspect ratio and surface roughness on satellite retrieval of ice-cloud properties,” J. Quant. Spectrosc. Radiat. Transfer 63, 559–583 (1999).
[CrossRef]

M.-D. Chou, K-T. Lee, S.-C. Tsay, Q. Fu, “Parameterization for cloud longwave scattering for use in atmosphere models,” J. Climate 12, 159–169 (1999).
[CrossRef]

T. C. Grenfell, S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31,697–31,709 (1999).
[CrossRef]

M. I. Mishchenko, A. Macke, “How big should hexagonal ice crystals be to produce halos?” Appl. Opt. 38, 1626–1629 (1999).
[CrossRef]

W.-B. Sun, Q. Fu, Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141–3151 (1999).
[CrossRef]

1998

M. I. Mishchenko, A. Macke, “Incorporation of physical optics effect and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission,” J. Geophys. Res. 103, 1799–1805 (1998).
[CrossRef]

Q. Fu, P. Yang, W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 11, 2223–2237 (1998).
[CrossRef]

P. Yang, K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223–248 (1998).

1997

1996

1995

1994

B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for light calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

B. A. Baum, R. F. Arduini, B. A. Wielicki, P. Minnis, S.-C. Tsay, “Multilevel cloud retrieval using multispectral HIRS and AVHRR data: nighttime oceanic analysis,” J. Geophys. Res. 99, 5499–5514 (1994).
[CrossRef]

1993

P. Minnis, K. N. Liou, Y. Takano, “Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. I. Parameterization of radiance fields,” J. Atmos. Sci. 50, 1279–1304 (1993).
[CrossRef]

M. I. Mishchenko, “Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength,” Appl. Opt. 32, 623–625 (1993).

A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993).
[CrossRef] [PubMed]

1992

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–26 (1992).
[CrossRef]

1991

1989

Y. Takano, K. N. Liou, “Radiative transfer in cirrus clouds. II. Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
[CrossRef]

K. Muinonen, K. Lumme, J. Peltoniemi, W. M. Irvine, “Light scattering by randomly oriented crystals,” Appl. Opt. 28, 3051–3060 (1989).
[CrossRef] [PubMed]

K.-D. Rockwitz, “Scattering properties of horizontally oriented ice crystal columns in cirrus clouds,” Appl. Opt. 28, 4103–4110 (1989).
[CrossRef] [PubMed]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. I. Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

1985

A. Arking, J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Clim. Appl. Meteorol. 24, 322–333 (1985).
[CrossRef]

1984

1980

1973

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

1971

K. N. Liou, J. E. Hansen, “Intensity and polarization for single scattering by polydisperse spheres: a comparison of ray optics and Mie theory,” J. Atmos. Sci. 28, 995–1004 (1971).
[CrossRef]

1908

G. Mie, “Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
[CrossRef]

Arduini, R. F.

B. A. Baum, R. F. Arduini, B. A. Wielicki, P. Minnis, S.-C. Tsay, “Multilevel cloud retrieval using multispectral HIRS and AVHRR data: nighttime oceanic analysis,” J. Geophys. Res. 99, 5499–5514 (1994).
[CrossRef]

Arking, A.

A. Arking, J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Clim. Appl. Meteorol. 24, 322–333 (1985).
[CrossRef]

Arnott, W. P.

Asano, S.

Baran, A. J.

A. J. Baran, S. Havemann, “Rapid computation of the optical properties of hexagonal columns using complex angular momentum theory,” J. Quant. Spectrosc. Radiat. Transfer 63, 499–519 (1999).
[CrossRef]

Baum, B. A.

B. A. Baum, R. F. Arduini, B. A. Wielicki, P. Minnis, S.-C. Tsay, “Multilevel cloud retrieval using multispectral HIRS and AVHRR data: nighttime oceanic analysis,” J. Geophys. Res. 99, 5499–5514 (1994).
[CrossRef]

Best, F. A.

W. L. Smith, H. E. Revercomb, R. O. Knuteson, F. A. Best, R. Dedecker, H. B. Howell, H. M. Woolf, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. I. The high resolution interferometer sounder (HIS) systems,” J. Atmos. Sci. 52, 4238–4245 (1995).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

Carlson, B. E.

Chen, Z.

Childs, J. D.

A. Arking, J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Clim. Appl. Meteorol. 24, 322–333 (1985).
[CrossRef]

Chou, J.

Q. Han, W. B. Rossow, J. Chou, K-S. Kuo, R. M. Welch, “The effect of aspect ratio and surface roughness on satellite retrieval of ice-cloud properties,” J. Quant. Spectrosc. Radiat. Transfer 63, 559–583 (1999).
[CrossRef]

Chou, M.-D.

M.-D. Chou, K-T. Lee, S.-C. Tsay, Q. Fu, “Parameterization for cloud longwave scattering for use in atmosphere models,” J. Climate 12, 159–169 (1999).
[CrossRef]

Dedecker, R.

W. L. Smith, H. E. Revercomb, R. O. Knuteson, F. A. Best, R. Dedecker, H. B. Howell, H. M. Woolf, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. I. The high resolution interferometer sounder (HIS) systems,” J. Atmos. Sci. 52, 4238–4245 (1995).
[CrossRef]

Dong, Y. Y.

Draine, B. T.

Farafonov, V. G.

Flatau, P. J.

Fu, Q.

W.-B. Sun, Q. Fu, Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141–3151 (1999).
[CrossRef]

M.-D. Chou, K-T. Lee, S.-C. Tsay, Q. Fu, “Parameterization for cloud longwave scattering for use in atmosphere models,” J. Climate 12, 159–169 (1999).
[CrossRef]

Q. Fu, P. Yang, W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 11, 2223–2237 (1998).
[CrossRef]

Grenfell, T. C.

T. C. Grenfell, S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31,697–31,709 (1999).
[CrossRef]

Hallett, J.

Han, Q.

Q. Han, W. B. Rossow, J. Chou, K-S. Kuo, R. M. Welch, “The effect of aspect ratio and surface roughness on satellite retrieval of ice-cloud properties,” J. Quant. Spectrosc. Radiat. Transfer 63, 559–583 (1999).
[CrossRef]

Hansen, J. E.

K. N. Liou, J. E. Hansen, “Intensity and polarization for single scattering by polydisperse spheres: a comparison of ray optics and Mie theory,” J. Atmos. Sci. 28, 995–1004 (1971).
[CrossRef]

Havemann, S.

A. J. Baran, S. Havemann, “Rapid computation of the optical properties of hexagonal columns using complex angular momentum theory,” J. Quant. Spectrosc. Radiat. Transfer 63, 499–519 (1999).
[CrossRef]

Hovenier, J. W.

M. I. Mishchenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, San Diego, Calif., 1999).

Howell, H. B.

W. L. Smith, H. E. Revercomb, R. O. Knuteson, F. A. Best, R. Dedecker, H. B. Howell, H. M. Woolf, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. I. The high resolution interferometer sounder (HIS) systems,” J. Atmos. Sci. 52, 4238–4245 (1995).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Irvine, W. M.

Kaufman, Y. J.

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–26 (1992).
[CrossRef]

King, M. D.

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–26 (1992).
[CrossRef]

Knuteson, R. O.

W. L. Smith, H. E. Revercomb, R. O. Knuteson, F. A. Best, R. Dedecker, H. B. Howell, H. M. Woolf, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. I. The high resolution interferometer sounder (HIS) systems,” J. Atmos. Sci. 52, 4238–4245 (1995).
[CrossRef]

Kuo, K-S.

Q. Han, W. B. Rossow, J. Chou, K-S. Kuo, R. M. Welch, “The effect of aspect ratio and surface roughness on satellite retrieval of ice-cloud properties,” J. Quant. Spectrosc. Radiat. Transfer 63, 559–583 (1999).
[CrossRef]

Lee, K-T.

M.-D. Chou, K-T. Lee, S.-C. Tsay, Q. Fu, “Parameterization for cloud longwave scattering for use in atmosphere models,” J. Climate 12, 159–169 (1999).
[CrossRef]

Liou, K. N.

P. Yang, K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223–248 (1998).

P. Yang, K. N. Liou, “Light scattering by hexagonal ice crystals: solution by a ray-by-ray integration algorithm,” J. Opt. Soc. Am. A 14, 2278–2289 (1997).
[CrossRef]

P. Yang, K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996).
[CrossRef]

P. Yang, K. N. Liou, “Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models,” J. Opt. Soc. Am. A 12, 162–176 (1995).
[CrossRef]

P. Minnis, K. N. Liou, Y. Takano, “Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. I. Parameterization of radiance fields,” J. Atmos. Sci. 50, 1279–1304 (1993).
[CrossRef]

Y. Takano, K. N. Liou, “Radiative transfer in cirrus clouds. II. Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. I. Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

K. N. Liou, J. E. Hansen, “Intensity and polarization for single scattering by polydisperse spheres: a comparison of ray optics and Mie theory,” J. Atmos. Sci. 28, 995–1004 (1971).
[CrossRef]

Liu, Y.

D. L. Mitchell, A. Macke, Y. Liu, “Modeling cirrus clouds. II. Treatment of radiative properties,” J. Atmos. Sci. 53, 2967–2988 (1996).
[CrossRef]

Lock, J. A.

Lumme, K.

Macke, A.

M. I. Mishchenko, A. Macke, “How big should hexagonal ice crystals be to produce halos?” Appl. Opt. 38, 1626–1629 (1999).
[CrossRef]

M. I. Mishchenko, A. Macke, “Incorporation of physical optics effect and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission,” J. Geophys. Res. 103, 1799–1805 (1998).
[CrossRef]

D. L. Mitchell, A. Macke, Y. Liu, “Modeling cirrus clouds. II. Treatment of radiative properties,” J. Atmos. Sci. 53, 2967–2988 (1996).
[CrossRef]

A. Macke, M. I. Mishchenko, K. Muinonen, B. E. Carlson, “Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method,” Opt. Lett. 20, 1934–1936 (1995).
[CrossRef] [PubMed]

A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993).
[CrossRef] [PubMed]

Menzel, W. P.

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–26 (1992).
[CrossRef]

Mie, G.

G. Mie, “Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
[CrossRef]

Minnis, P.

B. A. Baum, R. F. Arduini, B. A. Wielicki, P. Minnis, S.-C. Tsay, “Multilevel cloud retrieval using multispectral HIRS and AVHRR data: nighttime oceanic analysis,” J. Geophys. Res. 99, 5499–5514 (1994).
[CrossRef]

P. Minnis, K. N. Liou, Y. Takano, “Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. I. Parameterization of radiance fields,” J. Atmos. Sci. 50, 1279–1304 (1993).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, A. Macke, “How big should hexagonal ice crystals be to produce halos?” Appl. Opt. 38, 1626–1629 (1999).
[CrossRef]

M. I. Mishchenko, A. Macke, “Incorporation of physical optics effect and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission,” J. Geophys. Res. 103, 1799–1805 (1998).
[CrossRef]

A. Macke, M. I. Mishchenko, K. Muinonen, B. E. Carlson, “Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method,” Opt. Lett. 20, 1934–1936 (1995).
[CrossRef] [PubMed]

M. I. Mishchenko, “Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength,” Appl. Opt. 32, 623–625 (1993).

M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991).
[CrossRef]

M. I. Mishchenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, San Diego, Calif., 1999).

Mitchell, D. L.

D. L. Mitchell, “Parameterization of the Mie extinction and absorption coefficients for water clouds,” J. Atmos. Sci. 57, 1311–1326 (2000).
[CrossRef]

D. L. Mitchell, A. Macke, Y. Liu, “Modeling cirrus clouds. II. Treatment of radiative properties,” J. Atmos. Sci. 53, 2967–2988 (1996).
[CrossRef]

Muinonen, K.

Peltoniemi, J.

Pennypacker, C. R.

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Purcell, E. M.

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Revercomb, H. E.

W. L. Smith, H. E. Revercomb, R. O. Knuteson, F. A. Best, R. Dedecker, H. B. Howell, H. M. Woolf, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. I. The high resolution interferometer sounder (HIS) systems,” J. Atmos. Sci. 52, 4238–4245 (1995).
[CrossRef]

Rockwitz, K.-D.

Rossow, W. B.

Q. Han, W. B. Rossow, J. Chou, K-S. Kuo, R. M. Welch, “The effect of aspect ratio and surface roughness on satellite retrieval of ice-cloud properties,” J. Quant. Spectrosc. Radiat. Transfer 63, 559–583 (1999).
[CrossRef]

Sato, M.

Smith, W. L.

W. L. Smith, H. E. Revercomb, R. O. Knuteson, F. A. Best, R. Dedecker, H. B. Howell, H. M. Woolf, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. I. The high resolution interferometer sounder (HIS) systems,” J. Atmos. Sci. 52, 4238–4245 (1995).
[CrossRef]

Somsikov, V. V.

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Sun, W. B.

Q. Fu, P. Yang, W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 11, 2223–2237 (1998).
[CrossRef]

Sun, W.-B.

Takano, Y.

P. Minnis, K. N. Liou, Y. Takano, “Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. I. Parameterization of radiance fields,” J. Atmos. Sci. 50, 1279–1304 (1993).
[CrossRef]

Y. Takano, K. N. Liou, “Radiative transfer in cirrus clouds. II. Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. I. Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

Tanre, D.

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–26 (1992).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, San Diego, Calif., 1999).

Tsay, S.-C.

M.-D. Chou, K-T. Lee, S.-C. Tsay, Q. Fu, “Parameterization for cloud longwave scattering for use in atmosphere models,” J. Climate 12, 159–169 (1999).
[CrossRef]

B. A. Baum, R. F. Arduini, B. A. Wielicki, P. Minnis, S.-C. Tsay, “Multilevel cloud retrieval using multispectral HIRS and AVHRR data: nighttime oceanic analysis,” J. Geophys. Res. 99, 5499–5514 (1994).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Voshchinnikov, N. V.

Warren, S.

Warren, S. G.

T. C. Grenfell, S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31,697–31,709 (1999).
[CrossRef]

Welch, R. M.

Q. Han, W. B. Rossow, J. Chou, K-S. Kuo, R. M. Welch, “The effect of aspect ratio and surface roughness on satellite retrieval of ice-cloud properties,” J. Quant. Spectrosc. Radiat. Transfer 63, 559–583 (1999).
[CrossRef]

Wielicki, B. A.

B. A. Baum, R. F. Arduini, B. A. Wielicki, P. Minnis, S.-C. Tsay, “Multilevel cloud retrieval using multispectral HIRS and AVHRR data: nighttime oceanic analysis,” J. Geophys. Res. 99, 5499–5514 (1994).
[CrossRef]

Wiscombe, W. J.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

Woolf, H. M.

W. L. Smith, H. E. Revercomb, R. O. Knuteson, F. A. Best, R. Dedecker, H. B. Howell, H. M. Woolf, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. I. The high resolution interferometer sounder (HIS) systems,” J. Atmos. Sci. 52, 4238–4245 (1995).
[CrossRef]

Xu, L.

Yang, P.

Zhang, J.

Ann. Phys. (Leipzig)

G. Mie, “Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
[CrossRef]

Appl. Opt.

M. I. Mishchenko, “Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength,” Appl. Opt. 32, 623–625 (1993).

A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993).
[CrossRef] [PubMed]

M. I. Mishchenko, A. Macke, “How big should hexagonal ice crystals be to produce halos?” Appl. Opt. 38, 1626–1629 (1999).
[CrossRef]

W.-B. Sun, Q. Fu, Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141–3151 (1999).
[CrossRef]

W. P. Arnott, Y. Y. Dong, J. Hallett, “Extinction efficiency in the infrared (2–18 µm) of laboratory ice clouds: observations of scattering minima in the Christiansen bands of ice,” Appl. Opt. 34, 541–551 (1995).
[CrossRef] [PubMed]

J. Zhang, L. Xu, “Light scattering by absorbing hexagonal ice crystals in cirrus clouds,” Appl. Opt. 34, 5867–5874 (1995).
[CrossRef] [PubMed]

J. A. Lock, “Ray scattering by an arbitrarily oriented spheroid. I. Diffraction and specular reflection. II. Transmission and cross-polarization effects,” Appl. Opt. 35, 500–531 (1996).
[CrossRef] [PubMed]

V. G. Farafonov, N. V. Voshchinnikov, V. V. Somsikov, “Light scattering by a core-mantle spheroidal particle,” Appl. Opt. 35, 5412–5426 (1996).
[CrossRef] [PubMed]

S. Asano, M. Sato, “Light scattering by randomly oriented spheroidal particles,” Appl. Opt. 19, 962–974 (1980).
[CrossRef] [PubMed]

W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980).
[CrossRef] [PubMed]

S. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
[CrossRef] [PubMed]

K. Muinonen, K. Lumme, J. Peltoniemi, W. M. Irvine, “Light scattering by randomly oriented crystals,” Appl. Opt. 28, 3051–3060 (1989).
[CrossRef] [PubMed]

K.-D. Rockwitz, “Scattering properties of horizontally oriented ice crystal columns in cirrus clouds,” Appl. Opt. 28, 4103–4110 (1989).
[CrossRef] [PubMed]

Astrophys. J.

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Contrib. Atmos. Phys.

P. Yang, K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223–248 (1998).

IEEE Trans. Geosci. Remote Sens.

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–26 (1992).
[CrossRef]

J. Atmos. Sci.

W. L. Smith, H. E. Revercomb, R. O. Knuteson, F. A. Best, R. Dedecker, H. B. Howell, H. M. Woolf, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. I. The high resolution interferometer sounder (HIS) systems,” J. Atmos. Sci. 52, 4238–4245 (1995).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. I. Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

K. N. Liou, J. E. Hansen, “Intensity and polarization for single scattering by polydisperse spheres: a comparison of ray optics and Mie theory,” J. Atmos. Sci. 28, 995–1004 (1971).
[CrossRef]

P. Minnis, K. N. Liou, Y. Takano, “Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. I. Parameterization of radiance fields,” J. Atmos. Sci. 50, 1279–1304 (1993).
[CrossRef]

D. L. Mitchell, A. Macke, Y. Liu, “Modeling cirrus clouds. II. Treatment of radiative properties,” J. Atmos. Sci. 53, 2967–2988 (1996).
[CrossRef]

D. L. Mitchell, “Parameterization of the Mie extinction and absorption coefficients for water clouds,” J. Atmos. Sci. 57, 1311–1326 (2000).
[CrossRef]

Y. Takano, K. N. Liou, “Radiative transfer in cirrus clouds. II. Theory and computation of multiple scattering in an anisotropic medium,” J. Atmos. Sci. 46, 20–36 (1989).
[CrossRef]

J. Clim. Appl. Meteorol.

A. Arking, J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Clim. Appl. Meteorol. 24, 322–333 (1985).
[CrossRef]

J. Climate

Q. Fu, P. Yang, W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 11, 2223–2237 (1998).
[CrossRef]

M.-D. Chou, K-T. Lee, S.-C. Tsay, Q. Fu, “Parameterization for cloud longwave scattering for use in atmosphere models,” J. Climate 12, 159–169 (1999).
[CrossRef]

J. Geophys. Res.

M. I. Mishchenko, A. Macke, “Incorporation of physical optics effect and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission,” J. Geophys. Res. 103, 1799–1805 (1998).
[CrossRef]

T. C. Grenfell, S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31,697–31,709 (1999).
[CrossRef]

B. A. Baum, R. F. Arduini, B. A. Wielicki, P. Minnis, S.-C. Tsay, “Multilevel cloud retrieval using multispectral HIRS and AVHRR data: nighttime oceanic analysis,” J. Geophys. Res. 99, 5499–5514 (1994).
[CrossRef]

J. Opt. Soc. Am. A

J. Quant. Spectrosc. Radiat. Transfer

A. J. Baran, S. Havemann, “Rapid computation of the optical properties of hexagonal columns using complex angular momentum theory,” J. Quant. Spectrosc. Radiat. Transfer 63, 499–519 (1999).
[CrossRef]

Q. Han, W. B. Rossow, J. Chou, K-S. Kuo, R. M. Welch, “The effect of aspect ratio and surface roughness on satellite retrieval of ice-cloud properties,” J. Quant. Spectrosc. Radiat. Transfer 63, 559–583 (1999).
[CrossRef]

Opt. Lett.

Other

M. I. Mishchenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, San Diego, Calif., 1999).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics