Abstract

The possibility of retrieval of urban aerosol physical properties from downwelling atmospheric infrared radiation spectra between 700 and 1400 cm-1 with 0.24-cm-1 spectral resolution, which can be obtained from the tropospheric infrared interferometric sounder developed by the Central Research Institute of Electric Power Industry, was estimated from error analysis of the least-squares fit method. The error analysis for retrieval of the aerosol extinction coefficient spectra in three atmospheric layers (boundary, free troposphere, and stratosphere) showed the retrievability only of the boundary layer. Based on this result, we propose the retrieval for particle number density of each aerosol component, which is one of the parameters for the aerosol size distribution function, using the boundary aerosol extinction coefficient spectra. We assume that aerosols in urban areas consist of three types of component, namely, water soluble, soot, and dustlike. Under this assumption, we estimated the error of the retrieved volume density for each aerosol component. For the estimation we used the least-squares fit of Mie-generated spectral extinction coefficients. The estimated error shows that the volume density of each aerosol component in an urban boundary layer is equivalent to the retrieval target. We also show that the aerosol properties can be retrieved with higher accuracy when the effects of multiple scattering by aerosols are included in the retrieval procedure.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription