Abstract

The possibility of retrieval of urban aerosol physical properties from downwelling atmospheric infrared radiation spectra between 700 and 1400 cm-1 with 0.24-cm-1 spectral resolution, which can be obtained from the tropospheric infrared interferometric sounder developed by the Central Research Institute of Electric Power Industry, was estimated from error analysis of the least-squares fit method. The error analysis for retrieval of the aerosol extinction coefficient spectra in three atmospheric layers (boundary, free troposphere, and stratosphere) showed the retrievability only of the boundary layer. Based on this result, we propose the retrieval for particle number density of each aerosol component, which is one of the parameters for the aerosol size distribution function, using the boundary aerosol extinction coefficient spectra. We assume that aerosols in urban areas consist of three types of component, namely, water soluble, soot, and dustlike. Under this assumption, we estimated the error of the retrieved volume density for each aerosol component. For the estimation we used the least-squares fit of Mie-generated spectral extinction coefficients. The estimated error shows that the volume density of each aerosol component in an urban boundary layer is equivalent to the retrieval target. We also show that the aerosol properties can be retrieved with higher accuracy when the effects of multiple scattering by aerosols are included in the retrieval procedure.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shimota, H. Kobayashi, S. Kadokura, “Radiometric calibration for the airborne interferometric monitor for greenhouse gases simulator,” Appl. Opt. 38, 571–576 (1999).
    [CrossRef]
  2. G. P. Anderson, J. H. Chetwynd, fascode3p User Guide (U.S. Air Force Phillips Laboratory, Hanscom Air Force Base, Mass., 1992).
  3. G. Echle, T. von Clarmann, H. Oelhaf, “Optical and microphysical parameters of the Mt. Pinatubo aerosol as determined from MIPAS-B mid-IR limb emission spectra,” J. Geophys. Res. 103, 19193–19211 (1998).
    [CrossRef]
  4. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976).
    [CrossRef]
  5. R. G. Isaacs, W. C. Wang, R. D. Worsham, S. Goldenberg, “Multiple scattering lowtran and fascode models,” Appl. Opt. 26, 1272–1281 (1987).
    [CrossRef] [PubMed]
  6. A. S. Jursa, ed., Handbook of Geophysics and the Space Environment (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1985), Chap. 18, p. 9.
  7. J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Pollution to Climate Change (Wiley-Interscience, New York, 1998), p. 429.
  8. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmospheric and the effects of humidity variations of their optical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  9. C. N. Davies, “Size distribution of atmospheric particles,” Aerosol Sci. 5, 293–300 (1974).
    [CrossRef]
  10. K.-N. Liou, Introduction to Atmospheric Radiation (Academic, New York, 1980), pp. 123–139.
  11. Ref. 7, pp. 414 and 415.
  12. World Climate Programme (WCP-112), “A preliminary cloudless standard atmosphere for radiation computation,” (1986).
  13. F. E. Volz, “Infrared absorption by atmosphere aerosol substances,” J. Geophys. Res. 77, 1017–1031 (1972).
    [CrossRef]
  14. F. E. Volz, “Infrared refractive index of atmospheric aerosol substances,” Appl. Opt. 11, 755–759 (1972).
    [CrossRef] [PubMed]
  15. F. E. Volz, “Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice, and flyash,” Appl. Opt. 12, 564–568 (1973).
    [CrossRef] [PubMed]
  16. J. T. Twitty, J. A. Weinman, “Radiative properties of carbonaceous aerosols,” J. Appl. Meteorol. 10, 725–731 (1971).
    [CrossRef]
  17. Ref. 7, p. 430.

1999 (1)

1998 (1)

G. Echle, T. von Clarmann, H. Oelhaf, “Optical and microphysical parameters of the Mt. Pinatubo aerosol as determined from MIPAS-B mid-IR limb emission spectra,” J. Geophys. Res. 103, 19193–19211 (1998).
[CrossRef]

1987 (1)

1976 (1)

C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976).
[CrossRef]

1974 (1)

C. N. Davies, “Size distribution of atmospheric particles,” Aerosol Sci. 5, 293–300 (1974).
[CrossRef]

1973 (1)

1972 (2)

F. E. Volz, “Infrared absorption by atmosphere aerosol substances,” J. Geophys. Res. 77, 1017–1031 (1972).
[CrossRef]

F. E. Volz, “Infrared refractive index of atmospheric aerosol substances,” Appl. Opt. 11, 755–759 (1972).
[CrossRef] [PubMed]

1971 (1)

J. T. Twitty, J. A. Weinman, “Radiative properties of carbonaceous aerosols,” J. Appl. Meteorol. 10, 725–731 (1971).
[CrossRef]

Anderson, G. P.

G. P. Anderson, J. H. Chetwynd, fascode3p User Guide (U.S. Air Force Phillips Laboratory, Hanscom Air Force Base, Mass., 1992).

Chetwynd, J. H.

G. P. Anderson, J. H. Chetwynd, fascode3p User Guide (U.S. Air Force Phillips Laboratory, Hanscom Air Force Base, Mass., 1992).

Davies, C. N.

C. N. Davies, “Size distribution of atmospheric particles,” Aerosol Sci. 5, 293–300 (1974).
[CrossRef]

Echle, G.

G. Echle, T. von Clarmann, H. Oelhaf, “Optical and microphysical parameters of the Mt. Pinatubo aerosol as determined from MIPAS-B mid-IR limb emission spectra,” J. Geophys. Res. 103, 19193–19211 (1998).
[CrossRef]

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmospheric and the effects of humidity variations of their optical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Goldenberg, S.

Isaacs, R. G.

Kadokura, S.

Kobayashi, H.

Liou, K.-N.

K.-N. Liou, Introduction to Atmospheric Radiation (Academic, New York, 1980), pp. 123–139.

Oelhaf, H.

G. Echle, T. von Clarmann, H. Oelhaf, “Optical and microphysical parameters of the Mt. Pinatubo aerosol as determined from MIPAS-B mid-IR limb emission spectra,” J. Geophys. Res. 103, 19193–19211 (1998).
[CrossRef]

Pandis, S. N.

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Pollution to Climate Change (Wiley-Interscience, New York, 1998), p. 429.

Rodgers, C. D.

C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976).
[CrossRef]

Seinfeld, J. H.

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Pollution to Climate Change (Wiley-Interscience, New York, 1998), p. 429.

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmospheric and the effects of humidity variations of their optical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Shimota, A.

Twitty, J. T.

J. T. Twitty, J. A. Weinman, “Radiative properties of carbonaceous aerosols,” J. Appl. Meteorol. 10, 725–731 (1971).
[CrossRef]

Volz, F. E.

von Clarmann, T.

G. Echle, T. von Clarmann, H. Oelhaf, “Optical and microphysical parameters of the Mt. Pinatubo aerosol as determined from MIPAS-B mid-IR limb emission spectra,” J. Geophys. Res. 103, 19193–19211 (1998).
[CrossRef]

Wang, W. C.

Weinman, J. A.

J. T. Twitty, J. A. Weinman, “Radiative properties of carbonaceous aerosols,” J. Appl. Meteorol. 10, 725–731 (1971).
[CrossRef]

Worsham, R. D.

Aerosol Sci. (1)

C. N. Davies, “Size distribution of atmospheric particles,” Aerosol Sci. 5, 293–300 (1974).
[CrossRef]

Appl. Opt. (4)

J. Appl. Meteorol. (1)

J. T. Twitty, J. A. Weinman, “Radiative properties of carbonaceous aerosols,” J. Appl. Meteorol. 10, 725–731 (1971).
[CrossRef]

J. Geophys. Res. (2)

G. Echle, T. von Clarmann, H. Oelhaf, “Optical and microphysical parameters of the Mt. Pinatubo aerosol as determined from MIPAS-B mid-IR limb emission spectra,” J. Geophys. Res. 103, 19193–19211 (1998).
[CrossRef]

F. E. Volz, “Infrared absorption by atmosphere aerosol substances,” J. Geophys. Res. 77, 1017–1031 (1972).
[CrossRef]

Rev. Geophys. Space Phys. (1)

C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976).
[CrossRef]

Other (8)

G. P. Anderson, J. H. Chetwynd, fascode3p User Guide (U.S. Air Force Phillips Laboratory, Hanscom Air Force Base, Mass., 1992).

A. S. Jursa, ed., Handbook of Geophysics and the Space Environment (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1985), Chap. 18, p. 9.

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Pollution to Climate Change (Wiley-Interscience, New York, 1998), p. 429.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmospheric and the effects of humidity variations of their optical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Ref. 7, p. 430.

K.-N. Liou, Introduction to Atmospheric Radiation (Academic, New York, 1980), pp. 123–139.

Ref. 7, pp. 414 and 415.

World Climate Programme (WCP-112), “A preliminary cloudless standard atmosphere for radiation computation,” (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

TIIS observed and calculated downwelling atmospheric radiation spectra obtained, respectively, from observations performed at the Central Research Institute of Electric Power Industry, Tokyo, and from simulations with fascode3 with an urban aerosol model. The particle number densities (>0.3-µm particle diameter) were measured with a laser particle counter operated at the ground. The observations were performed on (a) 6 December 1999 with high aerosol concentration and (b) 7 December 1999 with low aerosol concentration.

Fig. 2
Fig. 2

Extinction coefficient spectra for aerosols in three layers. The spectral interval is 5 cm-1. Spectra were calculated with the urban aerosol model of fascode3: (a) with 0–2-km altitude, (b) with 2–10-km altitude, (c) above 10-km altitude.

Fig. 3
Fig. 3

Variation spectra of downwelling atmospheric radiance calculated from a 10% increase in aerosol extinction coefficients for three different layers. The vertical distribution of the aerosol was assumed to follow the urban aerosol model with 5-km visibility.

Fig. 4
Fig. 4

Estimated errors in aerosol extinction coefficient retrieval with the downwelling atmospheric radiation spectrum measured with the TIIS in an urban area. Errors in graphs are expressed as ratios to the extinction coefficients depicted in Fig. 2.

Fig. 5
Fig. 5

Calculated variation spectra of boundary layer extinction coefficients caused by an increase in particle number density of each aerosol component. Increased particle number densities in the Mie scattering model calculation are 10% of 450 000 cm-3 for the water-soluble component, 10% of 400 000 cm-3 for soot, and 10% of 0.2 cm-3 for the dustlike component.

Fig. 6
Fig. 6

Estimated errors for the aerosol extinction coefficient retrieval contain multiple-scattering effects.

Fig. 7
Fig. 7

Comparison of spectra of downwelling atmospheric radiance caused by a 10% increase in extinction coefficients related to the aerosol model in fascode3. The solid curve represents spectra calculated with fascode3 and the multiple-scattering effects. The dashed curve represents spectra obtained without multiple-scattering effects.

Tables (3)

Tables Icon

Table 1 Specifications of the TIIS

Tables Icon

Table 2 Size Distribution Function Parametersa

Tables Icon

Table 3 Estimated Retrieval Errorsa

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

-dIνkνρds=Iν-Jν,
Iν=0 BνTzτνzzdz,
τ= kνρds.
Iν=Fνp0+Fνpp-p0,
y=Ax,
x=ATS-1A-1ATS-1y,
Sr=ATS-1A-1ATS-1SATS-1A-1ATS-1T=ATS-1A-1.
h=ATS-1A-1ATS-1g.
Ss=h hT.
Ss= Ss,j,
St=Sr+Ss,
nr=dNidr=Nir2πlogsiexp-logr-logui22log si2,
kν=i=130 σmiν, r, νnr, ui, si, Nidr,
σ=2πr2X2n=12n+1Rean+bn,
an=ψnXmψnX-mψnXmψnXψnXmξnX-mψnXmξnX,
bn=mψnXmψnX-ψnXmψnXmψnXmξnX-ψnXmξnX.
ψn=πρ2 Jn+1/2ρ,
ξn=πρ2 Hn+1/2ρ.
Sp=BTSt-1B-1,
V=π60 nr3dr.
Jτ, u, ϕ=J0τ, u, ϕ+JMτ, u, ϕ,
JMτ, u, ϕ=ω0τ4π PΩ; ΩIτ, ΩdΩ,

Metrics