Abstract

Optical remote sensing of ocean color is a well-established technique that is used to produce maps of marine constituents on a routine basis. Retrieval algorithms used to infer pigment concentrations from measurements of ocean color are usually based on the assumption that the upper ocean column is vertically homogeneous. However, stable stratification of the water column is often encountered in coastal waters and in fjords. This stratification is decisive for the initiation, maintainance, and species composition of phytoplankton blooms. Here we present an optical remote-sensing algorithm with the ability to resolve such a vertical structure of oceanic waters. The vertical structure is assumed to consist of two homogeneous layers with different concentrations of chlorophyll a. The algorithm is designed to determine the chlorophyll-a concentrations of the two layers as well as the thickness of the upper layer. These three parameters influence the ocean color and are simultaneously retrieved through an inverse-modeling technique. This technique consists of using radiative-transfer computations for a coupled atmosphere–ocean system to simulate radiances received in various bands of the satellite sensor and to compare these simulated results with measured radiances. The sum of absolute values of differences between simulated and measured radiances is minimized by use of an optimization algorithm, and the retrieved parameters are those that yield the minimum sum of differences between measured and simulated data. The optimization algorithm that we used in our study is the simulated annealing method, which is an extension of the downhill simplex algorithm. In this study the algorithm was tested on synthetic data generated by the forward model. The results indicate that it should be possible to retrieve vertical variations in the pigment concentration. The synthetic data were generated for spectral bands that coincide with those of the Medium Resolution Imaging Spectrometer sensor, which will be a part of the instrument package of the upcoming Environmental Satellite.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Dahl, K. Tangen, “Gyrodinium aureolum bloom along the Norwegian coast in 1988,” in Toxic Marine Phytoplankton, E. Granéli, B. Sundstrøm, L. Edler, D. M. Anderson, eds. Proceedings of the 4th International Conference on Toxic Marine Phytoplankton, 26–30 June 1989, Lund, Sweden (Elsevier Science Publishers, New York, 1989), pp. 123–127.
  2. W. Eikrem, J. Throndsen, “Toxic prymnesiophytes identified from Norwegian coastal waters,” in Toxic Phytoplankton Blooms in the Sea, T. J. Smayda, Y. Shimizu, eds., Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, Newport, Rhode Island, 28 October–1 November 1991 (Elsevier, New York, 1993), pp. 687–692.
  3. J. A. Fuhrman, D. G. Capone, “Possible biogeochemical consequences of ocean fertilization,” Limnol. Oceanogr. 36, 1951–1959 (1991).
    [CrossRef]
  4. S. Manabe, R. J. Stouffer, “Century-scale effect of increased atmospheric CO2 on the ocean–atmosphere system,” Nature (London) 7, 14–20 (1996).
  5. T. Platt, S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).
    [CrossRef] [PubMed]
  6. H. R. Gordon, W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975).
    [CrossRef] [PubMed]
  7. S. R. Erga, “Ecological studies on the phytoplankton of Boknafjorden, western Norway. I. The effect of water exchange processes and environmental factors on temporal and vertical variability of biomass,” Sarsia 74, 161–176 (1989).
  8. S. R. Erga, H. R. Skjoldal, “Diel variations in photosynthetic activity of summer phytoplankton in Lindåspollene, Western Norway,” Mar. Ecol. Prog. Ser. 65, 73–85 (1990).
    [CrossRef]
  9. E. L. Venrick, “The vertical distributions of chlorophyll and phytoplankton species in the North Pacific central environment,” J. Plankton Res. 10, 987–998 (1988).
    [CrossRef]
  10. S. R. Erga, A. M. Omar, I. Singstad, E. Steinseide, “An optical detection system for the study of fine-scale vertical displacement of microalgae in an artificial water column,” J. Phycol. 35, 176–183 (1999).
  11. H. R. Gordon, O. B. Brown, “Diffuse reflectance of the ocean: some effects of vertical structure,” Appl. Opt. 14, 2892–2895 (1975).
    [CrossRef] [PubMed]
  12. H. R. Gordon, “Remote sensing of optical properties in continuously stratified waters,” Appl. Opt. 17, 1893–1897 (1978).
    [CrossRef] [PubMed]
  13. H. R. Gordon, G. C. Boynton, “Radiance–irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: vertically stratified water bodies,” Appl. Opt. 37, 3886–3896 (1998).
    [CrossRef]
  14. W. D. Philpot, “Radiative transfer in stratified waters: a single-scattering approximation for irradiance,” Appl. Opt. 26, 4123–4132 (1987).
    [CrossRef] [PubMed]
  15. J. Fischer, R. Doerffer, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
    [CrossRef]
  16. R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
    [CrossRef]
  17. Ø. Frette, J. J. Stamnes, K. Stamnes, “Optical remote sensing of marine constituents in coastal waters: a feasibility study,” Appl. Opt. 37, 8318–8326 (1998).
    [CrossRef]
  18. Z. Jin, K. Stamnes, “Radiative transfer in nonuniformly refracting layered media: atmosphere–ocean system,” Appl. Opt. 33, 431–442 (1994).
    [CrossRef] [PubMed]
  19. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1992).
  20. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
    [CrossRef] [PubMed]
  21. G. E. Thomas, K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge U. Press, Cambridge, 1999).
    [CrossRef]
  22. K. Stamnes, “Transfer of ultraviolet light in the atmosphere and ocean: a tutorial review,” in Solar Ultraviolet Radiation: Modelling, Measurements and Effects, C. S. Zerefos, A. F. Bais, eds., Vol. 1 of NATO ASI Series (Springer-Verlag, Berlin, 1997), pp. 49–64.
    [CrossRef]
  23. A. Morel, B. Gentili, “Diffuse reflectance of natural waters: its dependence on the Sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
    [CrossRef] [PubMed]
  24. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]
  25. L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
    [CrossRef]
  26. S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
    [CrossRef]
  27. G. P. Andersen, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” , (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).
  28. H. R. Gordon, M. H. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
    [CrossRef] [PubMed]
  29. R. Doerffer, K. Søorensen, J. Aiken, “MERIS: potential for coastal application,” in Remote Sensing in Action, P. J. Curran, C. Robertson, eds., proceedings of the 21st Annual Conference of the Remote Sensing Society, 11–14 September 1995, University of Southampton, UK. (Remote Sensing Society, Nottingham, UK, 1995), pp. 166–175.
  30. M. Perry, ed., “MERIS, the medium resolution imaging spectrometer,” Report of the MERIS Scientific Advisory Group (European Space Agency, Munich, Germany, 1996).
  31. J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA Medium Resolution Imaging Spectrometer (MERIS),” Backscatter 7, 14–20 (1996).
  32. J. D. Pinteŕ, Global Optimization in Action (Kluwer, Dordrecht, The Netherlands, 1996).
    [CrossRef]
  33. G. Nielsen, H. Kaas, H. Ravn, “Vertical migration of Gyrodinium aureolum in an artificial water column,” in Toxic Phytoplankton Blooms in the Sea, T. J. Smayda, Y. Shimizu, eds., Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, Newport, Rhode Island, 28 October–1 November, 1991 (Elsevier, New York, 1993), pp. 789–794.
  34. H. R. Skjoldal, I. Dundas, “Report of the ICES Workshop on the Chrysochromulina polylepis bloom in the Skagerrak and the Kattegat in May–June 1988, Bergen 28. Feb. until 02. March 1989, “ (International Council for Exploration of the Sea, Copenhagen, Denmark, 1991).

1999 (1)

S. R. Erga, A. M. Omar, I. Singstad, E. Steinseide, “An optical detection system for the study of fine-scale vertical displacement of microalgae in an artificial water column,” J. Phycol. 35, 176–183 (1999).

1998 (2)

1996 (2)

S. Manabe, R. J. Stouffer, “Century-scale effect of increased atmospheric CO2 on the ocean–atmosphere system,” Nature (London) 7, 14–20 (1996).

J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA Medium Resolution Imaging Spectrometer (MERIS),” Backscatter 7, 14–20 (1996).

1994 (3)

1993 (1)

1991 (2)

1990 (1)

S. R. Erga, H. R. Skjoldal, “Diel variations in photosynthetic activity of summer phytoplankton in Lindåspollene, Western Norway,” Mar. Ecol. Prog. Ser. 65, 73–85 (1990).
[CrossRef]

1989 (2)

S. R. Erga, “Ecological studies on the phytoplankton of Boknafjorden, western Norway. I. The effect of water exchange processes and environmental factors on temporal and vertical variability of biomass,” Sarsia 74, 161–176 (1989).

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

1988 (2)

T. Platt, S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).
[CrossRef] [PubMed]

E. L. Venrick, “The vertical distributions of chlorophyll and phytoplankton species in the North Pacific central environment,” J. Plankton Res. 10, 987–998 (1988).
[CrossRef]

1987 (2)

J. Fischer, R. Doerffer, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
[CrossRef]

W. D. Philpot, “Radiative transfer in stratified waters: a single-scattering approximation for irradiance,” Appl. Opt. 26, 4123–4132 (1987).
[CrossRef] [PubMed]

1981 (2)

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

1978 (1)

1975 (2)

Aiken, J.

R. Doerffer, K. Søorensen, J. Aiken, “MERIS: potential for coastal application,” in Remote Sensing in Action, P. J. Curran, C. Robertson, eds., proceedings of the 21st Annual Conference of the Remote Sensing Society, 11–14 September 1995, University of Southampton, UK. (Remote Sensing Society, Nottingham, UK, 1995), pp. 166–175.

Andersen, G. P.

G. P. Andersen, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” , (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Baker, K. S.

Bézy, J. L.

J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA Medium Resolution Imaging Spectrometer (MERIS),” Backscatter 7, 14–20 (1996).

Boynton, G. C.

Brown, O. B.

Bruzzi, S.

J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA Medium Resolution Imaging Spectrometer (MERIS),” Backscatter 7, 14–20 (1996).

Capone, D. G.

J. A. Fuhrman, D. G. Capone, “Possible biogeochemical consequences of ocean fertilization,” Limnol. Oceanogr. 36, 1951–1959 (1991).
[CrossRef]

Chetwynd, J. H.

G. P. Andersen, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” , (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Clough, S. A.

G. P. Andersen, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” , (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Dahl, E.

E. Dahl, K. Tangen, “Gyrodinium aureolum bloom along the Norwegian coast in 1988,” in Toxic Marine Phytoplankton, E. Granéli, B. Sundstrøm, L. Edler, D. M. Anderson, eds. Proceedings of the 4th International Conference on Toxic Marine Phytoplankton, 26–30 June 1989, Lund, Sweden (Elsevier Science Publishers, New York, 1989), pp. 123–127.

Delwart, S.

J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA Medium Resolution Imaging Spectrometer (MERIS),” Backscatter 7, 14–20 (1996).

Doerffer, R.

R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
[CrossRef]

J. Fischer, R. Doerffer, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
[CrossRef]

R. Doerffer, K. Søorensen, J. Aiken, “MERIS: potential for coastal application,” in Remote Sensing in Action, P. J. Curran, C. Robertson, eds., proceedings of the 21st Annual Conference of the Remote Sensing Society, 11–14 September 1995, University of Southampton, UK. (Remote Sensing Society, Nottingham, UK, 1995), pp. 166–175.

Dundas, I.

H. R. Skjoldal, I. Dundas, “Report of the ICES Workshop on the Chrysochromulina polylepis bloom in the Skagerrak and the Kattegat in May–June 1988, Bergen 28. Feb. until 02. March 1989, “ (International Council for Exploration of the Sea, Copenhagen, Denmark, 1991).

Eikrem, W.

W. Eikrem, J. Throndsen, “Toxic prymnesiophytes identified from Norwegian coastal waters,” in Toxic Phytoplankton Blooms in the Sea, T. J. Smayda, Y. Shimizu, eds., Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, Newport, Rhode Island, 28 October–1 November 1991 (Elsevier, New York, 1993), pp. 687–692.

Erga, S. R.

S. R. Erga, A. M. Omar, I. Singstad, E. Steinseide, “An optical detection system for the study of fine-scale vertical displacement of microalgae in an artificial water column,” J. Phycol. 35, 176–183 (1999).

S. R. Erga, H. R. Skjoldal, “Diel variations in photosynthetic activity of summer phytoplankton in Lindåspollene, Western Norway,” Mar. Ecol. Prog. Ser. 65, 73–85 (1990).
[CrossRef]

S. R. Erga, “Ecological studies on the phytoplankton of Boknafjorden, western Norway. I. The effect of water exchange processes and environmental factors on temporal and vertical variability of biomass,” Sarsia 74, 161–176 (1989).

Fischer, J.

R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
[CrossRef]

J. Fischer, R. Doerffer, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1992).

Frette, Ø.

Fuhrman, J. A.

J. A. Fuhrman, D. G. Capone, “Possible biogeochemical consequences of ocean fertilization,” Limnol. Oceanogr. 36, 1951–1959 (1991).
[CrossRef]

Gentili, B.

Gordon, H. R.

Jin, Z.

Kaas, H.

G. Nielsen, H. Kaas, H. Ravn, “Vertical migration of Gyrodinium aureolum in an artificial water column,” in Toxic Phytoplankton Blooms in the Sea, T. J. Smayda, Y. Shimizu, eds., Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, Newport, Rhode Island, 28 October–1 November, 1991 (Elsevier, New York, 1993), pp. 789–794.

Kattawar, G. W.

Kneizys, F. X.

G. P. Andersen, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” , (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Manabe, S.

S. Manabe, R. J. Stouffer, “Century-scale effect of increased atmospheric CO2 on the ocean–atmosphere system,” Nature (London) 7, 14–20 (1996).

McCluney, W. R.

Merheim-Kealy, P.

J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA Medium Resolution Imaging Spectrometer (MERIS),” Backscatter 7, 14–20 (1996).

Mobley, C. D.

Morel, A.

Nielsen, G.

G. Nielsen, H. Kaas, H. Ravn, “Vertical migration of Gyrodinium aureolum in an artificial water column,” in Toxic Phytoplankton Blooms in the Sea, T. J. Smayda, Y. Shimizu, eds., Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, Newport, Rhode Island, 28 October–1 November, 1991 (Elsevier, New York, 1993), pp. 789–794.

Omar, A. M.

S. R. Erga, A. M. Omar, I. Singstad, E. Steinseide, “An optical detection system for the study of fine-scale vertical displacement of microalgae in an artificial water column,” J. Phycol. 35, 176–183 (1999).

Philpot, W. D.

Pinter, J. D.

J. D. Pinteŕ, Global Optimization in Action (Kluwer, Dordrecht, The Netherlands, 1996).
[CrossRef]

Platt, T.

T. Platt, S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).
[CrossRef] [PubMed]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1992).

Prieur, L.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Rast, M.

J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA Medium Resolution Imaging Spectrometer (MERIS),” Backscatter 7, 14–20 (1996).

Ravn, H.

G. Nielsen, H. Kaas, H. Ravn, “Vertical migration of Gyrodinium aureolum in an artificial water column,” in Toxic Phytoplankton Blooms in the Sea, T. J. Smayda, Y. Shimizu, eds., Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, Newport, Rhode Island, 28 October–1 November, 1991 (Elsevier, New York, 1993), pp. 789–794.

Reinersman, P.

Sathyendranath, S.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

T. Platt, S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).
[CrossRef] [PubMed]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Shettle, E. P.

G. P. Andersen, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” , (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Singstad, I.

S. R. Erga, A. M. Omar, I. Singstad, E. Steinseide, “An optical detection system for the study of fine-scale vertical displacement of microalgae in an artificial water column,” J. Phycol. 35, 176–183 (1999).

Skjoldal, H. R.

S. R. Erga, H. R. Skjoldal, “Diel variations in photosynthetic activity of summer phytoplankton in Lindåspollene, Western Norway,” Mar. Ecol. Prog. Ser. 65, 73–85 (1990).
[CrossRef]

H. R. Skjoldal, I. Dundas, “Report of the ICES Workshop on the Chrysochromulina polylepis bloom in the Skagerrak and the Kattegat in May–June 1988, Bergen 28. Feb. until 02. March 1989, “ (International Council for Exploration of the Sea, Copenhagen, Denmark, 1991).

Smith, R. C.

Søorensen, K.

R. Doerffer, K. Søorensen, J. Aiken, “MERIS: potential for coastal application,” in Remote Sensing in Action, P. J. Curran, C. Robertson, eds., proceedings of the 21st Annual Conference of the Remote Sensing Society, 11–14 September 1995, University of Southampton, UK. (Remote Sensing Society, Nottingham, UK, 1995), pp. 166–175.

Stamnes, J. J.

Stamnes, K.

Stavn, R. H.

Steinseide, E.

S. R. Erga, A. M. Omar, I. Singstad, E. Steinseide, “An optical detection system for the study of fine-scale vertical displacement of microalgae in an artificial water column,” J. Phycol. 35, 176–183 (1999).

Stouffer, R. J.

S. Manabe, R. J. Stouffer, “Century-scale effect of increased atmospheric CO2 on the ocean–atmosphere system,” Nature (London) 7, 14–20 (1996).

Tangen, K.

E. Dahl, K. Tangen, “Gyrodinium aureolum bloom along the Norwegian coast in 1988,” in Toxic Marine Phytoplankton, E. Granéli, B. Sundstrøm, L. Edler, D. M. Anderson, eds. Proceedings of the 4th International Conference on Toxic Marine Phytoplankton, 26–30 June 1989, Lund, Sweden (Elsevier Science Publishers, New York, 1989), pp. 123–127.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1992).

Thomas, G. E.

G. E. Thomas, K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge U. Press, Cambridge, 1999).
[CrossRef]

Throndsen, J.

W. Eikrem, J. Throndsen, “Toxic prymnesiophytes identified from Norwegian coastal waters,” in Toxic Phytoplankton Blooms in the Sea, T. J. Smayda, Y. Shimizu, eds., Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, Newport, Rhode Island, 28 October–1 November 1991 (Elsevier, New York, 1993), pp. 687–692.

Venrick, E. L.

E. L. Venrick, “The vertical distributions of chlorophyll and phytoplankton species in the North Pacific central environment,” J. Plankton Res. 10, 987–998 (1988).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1992).

Wang, M. H.

Adv. Space Res. (1)

J. Fischer, R. Doerffer, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
[CrossRef]

Appl. Opt. (11)

H. R. Gordon, W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, “Diffuse reflectance of the ocean: some effects of vertical structure,” Appl. Opt. 14, 2892–2895 (1975).
[CrossRef] [PubMed]

H. R. Gordon, “Remote sensing of optical properties in continuously stratified waters,” Appl. Opt. 17, 1893–1897 (1978).
[CrossRef] [PubMed]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

W. D. Philpot, “Radiative transfer in stratified waters: a single-scattering approximation for irradiance,” Appl. Opt. 26, 4123–4132 (1987).
[CrossRef] [PubMed]

Z. Jin, K. Stamnes, “Radiative transfer in nonuniformly refracting layered media: atmosphere–ocean system,” Appl. Opt. 33, 431–442 (1994).
[CrossRef] [PubMed]

H. R. Gordon, M. H. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef] [PubMed]

H. R. Gordon, G. C. Boynton, “Radiance–irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: vertically stratified water bodies,” Appl. Opt. 37, 3886–3896 (1998).
[CrossRef]

Ø. Frette, J. J. Stamnes, K. Stamnes, “Optical remote sensing of marine constituents in coastal waters: a feasibility study,” Appl. Opt. 37, 8318–8326 (1998).
[CrossRef]

A. Morel, B. Gentili, “Diffuse reflectance of natural waters: its dependence on the Sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
[CrossRef] [PubMed]

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

Backscatter (1)

J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA Medium Resolution Imaging Spectrometer (MERIS),” Backscatter 7, 14–20 (1996).

Int. J. Remote Sens. (1)

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

J. Geophys. Res. (1)

R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
[CrossRef]

J. Phycol. (1)

S. R. Erga, A. M. Omar, I. Singstad, E. Steinseide, “An optical detection system for the study of fine-scale vertical displacement of microalgae in an artificial water column,” J. Phycol. 35, 176–183 (1999).

J. Plankton Res. (1)

E. L. Venrick, “The vertical distributions of chlorophyll and phytoplankton species in the North Pacific central environment,” J. Plankton Res. 10, 987–998 (1988).
[CrossRef]

Limnol. Oceanogr. (2)

J. A. Fuhrman, D. G. Capone, “Possible biogeochemical consequences of ocean fertilization,” Limnol. Oceanogr. 36, 1951–1959 (1991).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Mar. Ecol. Prog. Ser. (1)

S. R. Erga, H. R. Skjoldal, “Diel variations in photosynthetic activity of summer phytoplankton in Lindåspollene, Western Norway,” Mar. Ecol. Prog. Ser. 65, 73–85 (1990).
[CrossRef]

Nature (London) (1)

S. Manabe, R. J. Stouffer, “Century-scale effect of increased atmospheric CO2 on the ocean–atmosphere system,” Nature (London) 7, 14–20 (1996).

Sarsia (1)

S. R. Erga, “Ecological studies on the phytoplankton of Boknafjorden, western Norway. I. The effect of water exchange processes and environmental factors on temporal and vertical variability of biomass,” Sarsia 74, 161–176 (1989).

Science (1)

T. Platt, S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).
[CrossRef] [PubMed]

Other (11)

E. Dahl, K. Tangen, “Gyrodinium aureolum bloom along the Norwegian coast in 1988,” in Toxic Marine Phytoplankton, E. Granéli, B. Sundstrøm, L. Edler, D. M. Anderson, eds. Proceedings of the 4th International Conference on Toxic Marine Phytoplankton, 26–30 June 1989, Lund, Sweden (Elsevier Science Publishers, New York, 1989), pp. 123–127.

W. Eikrem, J. Throndsen, “Toxic prymnesiophytes identified from Norwegian coastal waters,” in Toxic Phytoplankton Blooms in the Sea, T. J. Smayda, Y. Shimizu, eds., Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, Newport, Rhode Island, 28 October–1 November 1991 (Elsevier, New York, 1993), pp. 687–692.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, 1992).

G. E. Thomas, K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge U. Press, Cambridge, 1999).
[CrossRef]

K. Stamnes, “Transfer of ultraviolet light in the atmosphere and ocean: a tutorial review,” in Solar Ultraviolet Radiation: Modelling, Measurements and Effects, C. S. Zerefos, A. F. Bais, eds., Vol. 1 of NATO ASI Series (Springer-Verlag, Berlin, 1997), pp. 49–64.
[CrossRef]

G. P. Andersen, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” , (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

R. Doerffer, K. Søorensen, J. Aiken, “MERIS: potential for coastal application,” in Remote Sensing in Action, P. J. Curran, C. Robertson, eds., proceedings of the 21st Annual Conference of the Remote Sensing Society, 11–14 September 1995, University of Southampton, UK. (Remote Sensing Society, Nottingham, UK, 1995), pp. 166–175.

M. Perry, ed., “MERIS, the medium resolution imaging spectrometer,” Report of the MERIS Scientific Advisory Group (European Space Agency, Munich, Germany, 1996).

J. D. Pinteŕ, Global Optimization in Action (Kluwer, Dordrecht, The Netherlands, 1996).
[CrossRef]

G. Nielsen, H. Kaas, H. Ravn, “Vertical migration of Gyrodinium aureolum in an artificial water column,” in Toxic Phytoplankton Blooms in the Sea, T. J. Smayda, Y. Shimizu, eds., Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton, Newport, Rhode Island, 28 October–1 November, 1991 (Elsevier, New York, 1993), pp. 789–794.

H. R. Skjoldal, I. Dundas, “Report of the ICES Workshop on the Chrysochromulina polylepis bloom in the Skagerrak and the Kattegat in May–June 1988, Bergen 28. Feb. until 02. March 1989, “ (International Council for Exploration of the Sea, Copenhagen, Denmark, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Depth profiles of phytoplankton cell concentrations (Cells per milliliter) in Lindåspollene, western Norway, on 16 June 1982. Note the difference in scales between (a) (coccolithophorids, diatoms, and flagellates) and (b) (dinoflagellates and silicoflagellates).

Fig. 2
Fig. 2

(a) Depth profiles of nutrient concentrations [nitrate (NO3), silicate (Si), and orthophosphate (PO4)]. (b) Depth profiles of chlorophyll-a (Chl a) and carbon fixation (C fix) at Lindåspollene, western Norway, in June 1982. A DCM layer from 15 to 30 m is clearly seen in the chlorophyll-a profile.

Fig. 3
Fig. 3

Seasonal variations in the vertical distribution of chlorophyll-a (micrograms per liter) in Boknafjorden, western Norway, in 1981.

Fig. 4
Fig. 4

Schematic diagram of the radiative-transfer model of the coupled atmosphere–ocean system. Here τ p , a p , and p p are the optical depth, the single-scattering albedo, and the scattering phase function, respectively, of the pth atmospheric layer; the same variables with the subscript q are used for the qth ocean layer.

Fig. 5
Fig. 5

Schematic diagram of a two-layer ocean model. C 1 and C 2 are the chlorophyll-a concentrations in the upper and lower ocean layers, respectively, and D 1 is the depth of the upper layer.

Fig. 6
Fig. 6

Errors in the recovered values of top, D 1 and bottom, C 2 as a function of the actual value of D 1 for a situation in which the actual value of C 1 was 0.5 µg/L. The values of C 2 used were ○, C 2 = 2.5 µg/L; *, C 2 = 4.5 µg/L; ×, C 2 = 6.5 µg/L; and +, C 2 = 8.5 µg/L.

Fig. 7
Fig. 7

Errors in the recovered values of top, D 1 and bottom, C 2 as a function of the actual value of D 1 for a situation in which the actual value of C 1 was 1.5 µg/L. The values of C 2 used were the same as for Fig. 6.

Fig. 8
Fig. 8

Errors in the recovered values of top, D 1 and bottom, C 2 as a function of the actual values of D 1 for a situation in which the actual value of C 1 was 2.5 µg/L. The values of C 2 used were ○, C 2 = 0.5 µg/L; *, C 2 = 4.5 µg/L; ×, C 2 = 6.5 µg/L; and +, C 2 = 8.5 µg/L.

Fig. 9
Fig. 9

Variation in the satellite-received radiance as a function of C 2. The values of C 1 were top, 0.5 µg/L and bottom, 2.5 µg/L. The radiance variation is given in percent relative to the situation in which C 2 is 0.5 µg/L. Depth D 1 of the upper layer was 3 m. The labels from 1 to 8 indicate the band numbers of the MERIS sensor, as given in Table 1.

Fig. 10
Fig. 10

Variation in the satellite-received radiance as a function of C 2. The values of C 1 were the same as in Fig. 9, but depth D 1 of the upper layer has been increased from 3 to 8 m. The labeling of the satellite bands is the same as for Fig. 9.

Tables (1)

Tables Icon

Table 1 Band Configuration of the MERIS Sensor

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

Isτ, u, ϕ=Fsδu-μsδϕ-ϕsexp-τ/μs.
u dIτ, u, ϕdτ=Iτ, u, ϕ-aτ4π02πdϕ -11dupτ, u, ϕ; u, ϕ×Iτ, u, ϕ-S*τ, u, ϕ,
Sair*τ, u, ϕ=aτFs4π pτ, -μs, ϕs; u, ϕ×exp-τ/μs+aτFs4π ρs-μs; mrel×pτ, μs, ϕs; u, ϕexp-2τa-τ/μs,
Socn*τ, u, ϕ=aτFs4πμsμo,s Tb-μs; mrel×pτ, -μo,s, ϕs; u, ϕ×exp-τa/μsexp-τ-τa/μo,s,
μo,s=1-1-μs2/mrel21/2.
pτ, u, ϕ; u, ϕ=m=02N-12-δ0,mpmτ, u, u×cos mϕ-ϕ,
pmτ, u, u=l=m2N-12l+1χlτΛlmuΛlmu.
Iτ, u, ϕ=m=02N-1 Imτ, ucos mϕ0-ϕ,
u dImτ, udτ=Imτ, u-aτ2-11dupmτ, u, u×Imτ, u-S*mτ, um=0, 1, 2,  , 2N-1,
Sair*,mτ, u=X0mτ, uexp-τ/μs+X01mτ, uexpτ/μs Socn*,mτ, u=X02mτ, uexp-τ/μo,s,
X0mτ, u=a4π Fs2-δ0,mpmτ, -μs, u;X01mτ, u=aτFs4π ρs-μs; mrelexp-2τa/μs2-δ0,m×l=02N-12l+1χlτΛlmuΛlmμs,
X02mτ, u=aτFs4πμsμo,s Tb-μs, -μo,s; mrel×exp-τa1/μs-1/μo,s2-δ0,m×l=02N-1-1l+m2l+1χlτΛlmuΛlmμo,s.
Ia+τa, μa=ρs-μs; mrelIa-τa, μa+Tbμo; mrel×Io+τa, μo/mrel2,
Io-τa, μomrel2=ρsμo; mrelIo+τa, μomrel2+Tb-μa; mrelIa-τa, μa  μo>μc,
Io-τa, μo=Io+τa, μo  μo<μc.
μc=1-1/mrel21/2,
μo=1-1-μa2/mrel21/2.
Ipτ, ±μia=j=1N1C-jpg-jp±μiaexpkjpaτ+Cjpgjp±μia×exp-kjpaτ+Upτ, ±μia,
Iqτ, ±μio=j=1N2C-jqg-jq±μioexpkjqoτ+Cjqgjq±μio×exp-kjqoτ+Uqτ, ±μio,
aλ=awλ+0.06ac*λC0.651.0+0.2 * Yλ,
Yλ=expΓλ-λ0,
bλ=bwλ+Cbcλ,
bcλ=0.3C0.62λ0/λ.
gλ=gwbwλ+gcbcλbλ,
fcostD1, C1, C2=n |Isan-Isin|,

Metrics