Abstract

A Monte Carlo photon simulation method, which is based on statistical tracing of photons inside the chip, has been developed for analysis of LED’s in quantitative terms. Also included in the analysis is practical modeling of textured surfaces, which are often employed for enhanced light output. The method with its unique versatility is applicable to virtually any chip geometry and measures various important parameters such as photon-output-coupling efficiency, detailed photon flight statistics, and photon-output distribution patterns. It is speculated that the method can easily be extended to development of LED lamps and packages.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Mukai, M. Yamada, S. Nakamura, “InGaN-based uv/blue/green/amber/red LEDs,” in Light-Emitting Diodes: Research, Manufacturing, and Applications III, I. T. Ferguson, E. Schubert, H. Yao, eds., Proc. SPIE3621, 2–14 (1999).
  2. G. B. Stringfellow, M. G. Craford, High Brightness Light Emitting Diodes (Academic, New York, 1997).
  3. S. J. Lee, “Design rules for high-brightness light-emitting diodes grown on GaAs substrate,” Jpn. J. Appl. Phys. 37, 509–516 (1998).
    [CrossRef]
  4. R. Windish, P. Heremans, B. Dutta, M. Kuijk, S. Schoberth, P. Kiesel, G. H. Döhler, G. Borghs, “High-efficiency nonresonant cavity light-emitting diodes,” Electron. Lett. 34, 1153–1154 (1998).
    [CrossRef]
  5. S. J. Lee, S. W. Song, “Efficiency improvement in light-emitting diodes based on geometrically deformed chips,” in Light-Emitting Diodes: Research, Manufacturing, and Applications III, I. T. Ferguson, E. Schubert, H. Yao, eds., Proc. SPIE3621, 237–248 (1999).
  6. M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
    [CrossRef]
  7. C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Spring-Verlag, New York, 1989).
    [CrossRef]
  8. I. Schnitzer, E. Yablonovitch, “30% external quantum efficiency form surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
    [CrossRef]
  9. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, “Large-band-bandgap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technoloies,” J. Appl. Phys. 76, 1363–1398 (1994).
    [CrossRef]
  10. F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
    [CrossRef]
  11. K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, A. S. Liao, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045–1047 (1992).
    [CrossRef]

1999

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

1998

S. J. Lee, “Design rules for high-brightness light-emitting diodes grown on GaAs substrate,” Jpn. J. Appl. Phys. 37, 509–516 (1998).
[CrossRef]

R. Windish, P. Heremans, B. Dutta, M. Kuijk, S. Schoberth, P. Kiesel, G. H. Döhler, G. Borghs, “High-efficiency nonresonant cavity light-emitting diodes,” Electron. Lett. 34, 1153–1154 (1998).
[CrossRef]

1994

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, “Large-band-bandgap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technoloies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

1993

I. Schnitzer, E. Yablonovitch, “30% external quantum efficiency form surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

1992

K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, A. S. Liao, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045–1047 (1992).
[CrossRef]

Borghs, G.

R. Windish, P. Heremans, B. Dutta, M. Kuijk, S. Schoberth, P. Kiesel, G. H. Döhler, G. Borghs, “High-efficiency nonresonant cavity light-emitting diodes,” Electron. Lett. 34, 1153–1154 (1998).
[CrossRef]

Burns, M.

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, “Large-band-bandgap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technoloies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

Carter-Coman, C.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Chen, E. I.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Chui, H. C.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Collins, D.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Craford, M. G.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, A. S. Liao, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045–1047 (1992).
[CrossRef]

G. B. Stringfellow, M. G. Craford, High Brightness Light Emitting Diodes (Academic, New York, 1997).

DeFevere, D. C.

F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Döhler, G. H.

R. Windish, P. Heremans, B. Dutta, M. Kuijk, S. Schoberth, P. Kiesel, G. H. Döhler, G. Borghs, “High-efficiency nonresonant cavity light-emitting diodes,” Electron. Lett. 34, 1153–1154 (1998).
[CrossRef]

Dutta, B.

R. Windish, P. Heremans, B. Dutta, M. Kuijk, S. Schoberth, P. Kiesel, G. H. Döhler, G. Borghs, “High-efficiency nonresonant cavity light-emitting diodes,” Electron. Lett. 34, 1153–1154 (1998).
[CrossRef]

Fletcher, R. M.

F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, A. S. Liao, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045–1047 (1992).
[CrossRef]

Gao, G. B.

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, “Large-band-bandgap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technoloies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

Gardner, N. F.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Grillot, P.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Heremans, P.

R. Windish, P. Heremans, B. Dutta, M. Kuijk, S. Schoberth, P. Kiesel, G. H. Döhler, G. Borghs, “High-efficiency nonresonant cavity light-emitting diodes,” Electron. Lett. 34, 1153–1154 (1998).
[CrossRef]

Hoffler, G. E.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Huang, J.-W.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Huang, K. H.

K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, A. S. Liao, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045–1047 (1992).
[CrossRef]

Hueschen, M.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Jacoboni, C.

C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Spring-Verlag, New York, 1989).
[CrossRef]

Kiesel, P.

R. Windish, P. Heremans, B. Dutta, M. Kuijk, S. Schoberth, P. Kiesel, G. H. Döhler, G. Borghs, “High-efficiency nonresonant cavity light-emitting diodes,” Electron. Lett. 34, 1153–1154 (1998).
[CrossRef]

Kishi, F. A.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Kocot, C. P.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Krames, M. R.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Kuijk, M.

R. Windish, P. Heremans, B. Dutta, M. Kuijk, S. Schoberth, P. Kiesel, G. H. Döhler, G. Borghs, “High-efficiency nonresonant cavity light-emitting diodes,” Electron. Lett. 34, 1153–1154 (1998).
[CrossRef]

Kuo, C. P.

F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, A. S. Liao, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045–1047 (1992).
[CrossRef]

Lee, S. J.

S. J. Lee, “Design rules for high-brightness light-emitting diodes grown on GaAs substrate,” Jpn. J. Appl. Phys. 37, 509–516 (1998).
[CrossRef]

S. J. Lee, S. W. Song, “Efficiency improvement in light-emitting diodes based on geometrically deformed chips,” in Light-Emitting Diodes: Research, Manufacturing, and Applications III, I. T. Ferguson, E. Schubert, H. Yao, eds., Proc. SPIE3621, 237–248 (1999).

Liao, A. S.

K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, A. S. Liao, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045–1047 (1992).
[CrossRef]

Lin, M. E.

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, “Large-band-bandgap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technoloies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

Loh, B.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Lugli, P.

C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Spring-Verlag, New York, 1989).
[CrossRef]

Morkoc, H.

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, “Large-band-bandgap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technoloies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

Mukai, T.

T. Mukai, M. Yamada, S. Nakamura, “InGaN-based uv/blue/green/amber/red LEDs,” in Light-Emitting Diodes: Research, Manufacturing, and Applications III, I. T. Ferguson, E. Schubert, H. Yao, eds., Proc. SPIE3621, 2–14 (1999).

Nakamura, S.

T. Mukai, M. Yamada, S. Nakamura, “InGaN-based uv/blue/green/amber/red LEDs,” in Light-Emitting Diodes: Research, Manufacturing, and Applications III, I. T. Ferguson, E. Schubert, H. Yao, eds., Proc. SPIE3621, 2–14 (1999).

Ochiai-Holcomb, M.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Osentowski, T. D.

F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, A. S. Liao, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045–1047 (1992).
[CrossRef]

Park, K. G.

F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Peanasky, M. J.

F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Robins, V. M.

F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Rosselt, J.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Sasser, G.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Schnitzer, I.

I. Schnitzer, E. Yablonovitch, “30% external quantum efficiency form surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

Schoberth, S.

R. Windish, P. Heremans, B. Dutta, M. Kuijk, S. Schoberth, P. Kiesel, G. H. Döhler, G. Borghs, “High-efficiency nonresonant cavity light-emitting diodes,” Electron. Lett. 34, 1153–1154 (1998).
[CrossRef]

Song, S. W.

S. J. Lee, S. W. Song, “Efficiency improvement in light-emitting diodes based on geometrically deformed chips,” in Light-Emitting Diodes: Research, Manufacturing, and Applications III, I. T. Ferguson, E. Schubert, H. Yao, eds., Proc. SPIE3621, 237–248 (1999).

Steigerwald, D. A.

F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Steranka, F. M.

F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Stinson, L. J.

K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, A. S. Liao, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045–1047 (1992).
[CrossRef]

Stockman, S. A.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Stringfellow, G. B.

G. B. Stringfellow, M. G. Craford, High Brightness Light Emitting Diodes (Academic, New York, 1997).

Strite, S.

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, “Large-band-bandgap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technoloies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

Sverdlov, B.

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, “Large-band-bandgap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technoloies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

Tan, I.-H.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Tan, T. S.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

Vanderwater, D. A.

F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

Windish, R.

R. Windish, P. Heremans, B. Dutta, M. Kuijk, S. Schoberth, P. Kiesel, G. H. Döhler, G. Borghs, “High-efficiency nonresonant cavity light-emitting diodes,” Electron. Lett. 34, 1153–1154 (1998).
[CrossRef]

Yablonovitch, E.

I. Schnitzer, E. Yablonovitch, “30% external quantum efficiency form surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

Yamada, M.

T. Mukai, M. Yamada, S. Nakamura, “InGaN-based uv/blue/green/amber/red LEDs,” in Light-Emitting Diodes: Research, Manufacturing, and Applications III, I. T. Ferguson, E. Schubert, H. Yao, eds., Proc. SPIE3621, 2–14 (1999).

Yu, J. G.

F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, A. S. Liao, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045–1047 (1992).
[CrossRef]

Appl. Phys. Lett.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hoffler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kishi, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Rosselt, B. Loh, G. Sasser, D. Collins, “High-power truncated-pyramid (AlxGa-1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365–2367 (1999).
[CrossRef]

I. Schnitzer, E. Yablonovitch, “30% external quantum efficiency form surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
[CrossRef]

F. A. Kishi, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[CrossRef]

K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, A. S. Liao, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045–1047 (1992).
[CrossRef]

Electron. Lett.

R. Windish, P. Heremans, B. Dutta, M. Kuijk, S. Schoberth, P. Kiesel, G. H. Döhler, G. Borghs, “High-efficiency nonresonant cavity light-emitting diodes,” Electron. Lett. 34, 1153–1154 (1998).
[CrossRef]

J. Appl. Phys.

H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, “Large-band-bandgap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technoloies,” J. Appl. Phys. 76, 1363–1398 (1994).
[CrossRef]

Jpn. J. Appl. Phys.

S. J. Lee, “Design rules for high-brightness light-emitting diodes grown on GaAs substrate,” Jpn. J. Appl. Phys. 37, 509–516 (1998).
[CrossRef]

Other

C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Spring-Verlag, New York, 1989).
[CrossRef]

S. J. Lee, S. W. Song, “Efficiency improvement in light-emitting diodes based on geometrically deformed chips,” in Light-Emitting Diodes: Research, Manufacturing, and Applications III, I. T. Ferguson, E. Schubert, H. Yao, eds., Proc. SPIE3621, 237–248 (1999).

T. Mukai, M. Yamada, S. Nakamura, “InGaN-based uv/blue/green/amber/red LEDs,” in Light-Emitting Diodes: Research, Manufacturing, and Applications III, I. T. Ferguson, E. Schubert, H. Yao, eds., Proc. SPIE3621, 2–14 (1999).

G. B. Stringfellow, M. G. Craford, High Brightness Light Emitting Diodes (Academic, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematics of a LED structure: (a) LED chip, (b) reflecting cup, (c) LED lamp.

Fig. 2
Fig. 2

(a) Photon reflection or transmission at the semiconductor–encapsulant interface and (b) photon transmittance as a function of incidence angle θ i .

Fig. 3
Fig. 3

Photon-output coupling in rectangular cubic chips: (a) escape cones for photons generated at a point, (b) trapped-photon trajectories in a flat-surfaced rectangular chip, (c) randomized photon trajectories off a textured surface.

Fig. 4
Fig. 4

Flow chart for Monte Carlo simulation of a single photon.

Fig. 5
Fig. 5

Modeling for textured surfaces of the chip.

Fig. 6
Fig. 6

Rhomboidally deformed chips: (a) schematic view and (b) photon trajectories in the horizontal plane.

Fig. 7
Fig. 7

Photon-output coupling efficiency as a function of the position of photon generation in the active layer.

Fig. 8
Fig. 8

Points of photon generation in the active layer employed for evaluating the average photon-output coupling efficiency.

Fig. 9
Fig. 9

Average photon-output coupling efficiency as a function of the upper confining layer’s thickness t u .

Fig. 10
Fig. 10

Average photon-output coupling efficiency as a function of surface texturing index n st.

Fig. 11
Fig. 11

Average photon-output coupling efficiency as a function of horizontal plane deformation angle α h .

Fig. 12
Fig. 12

Average photon-output coupling efficiency as a function of vertical plane deformation angle α v .

Fig. 13
Fig. 13

Fractional photon output from the top surface as a function of vertical plane deformation angle α v .

Fig. 14
Fig. 14

Horizontal plane output distribution patterns of the photons coupled out of the sidewalls of the chip: (a) α h = 90°, α v = 0° (no texture); (b) α h = 90°, α v = 0° (textured); (c) α h = 60°, α v = 0° (no texture); (d) α h = 60°, α v = 0° (textured).

Fig. 15
Fig. 15

Examples of the far-field vertical plane photon-output distribution patterns of a LED lamp with a spherical epoxy lens of infinite radius. The assumed parameters for the reflecting cup are z 1 = 500 µm and z 2 = 900 µm.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

ΓTE=ns cos θi-ne cos θtns cos θi+ne cos θt,
ΓTM=ns cos θt-ne cos θtns cos θt+ne cos θi,
ns sin θi=ne sin θt.
θcne, ns=sin-1ne/ns,
TTE=1-RTE=1-|ΓTE|2,
TTM=1-RTM=1-|ΓTM|2,
R=1-δTM2RTE+δTM2RTM,
Ωcns, ne=ϕ=02πθ=0θcsin θdθdϕ=2π1-1-ne/ns21/2.
ηtrap=4π-6Ωc4π=31-ne/ns21/2-2.
ηc=ηchipTe=ηchip1-ne-12/ne+12,
P=1  photon alive,
P=0  photon absorbed.
eo=xˆeox+yˆeyo+zˆezo,
ro=xˆxo+yˆyo+zˆzo,
vo=cnxˆ sin θo cos ϕo+yˆ sin θo sin ϕo+zˆ cos θo,
rn+1=rn+vnτn,
An=exp-αnln,
ln=|rn+1-rn|=|vnτn|,
P=1,  ρpAn photon alive,
P=0,  ρp>An photon absorbed.
vn+1=vref,  ρfR photon reflected,
vn+1=vtr,  ρf>R photon transmitted,
P=1,  ρohmAohm photon reflected,
P=0,  ρohm>Aohm photon absorbed.
Niθni=ki cosnstθni-π/2<θni<π/20otherwise,
Ntθnt=kt cosnstθnt-π/2<θnt<π/20otherwise,
Ciθi, θni=cosθi-θniθi-π/2<θni<θi+π/20otherwise,
Piθni=NiθniCiθi, θni=ki cosnst θni cosθi-θniθi-π/2<θni<π/20otherwise,
ki=1θni-π/2π/2 cosnst θni cosθi-θnidθni.
Ctθnt, θi=cosθnt-π/2<θnt<π/20otherwise.
Ptθnt=NtθntCtθi, θnt=kt cosnst+1θnt-π/2<θnt<π/20otherwise,
kt=1-π/2π/2cosnst+1 θntdθnt.
ρni=θni-π/2θni Piτdτ,
ρnt=-π/2θnt Ptτdτ.
z=cotanθx2+y2,   z1<z<z2,

Metrics