Abstract

A Monte Carlo photon simulation method, which is based on statistical tracing of photons inside the chip, has been developed for analysis of LED’s in quantitative terms. Also included in the analysis is practical modeling of textured surfaces, which are often employed for enhanced light output. The method with its unique versatility is applicable to virtually any chip geometry and measures various important parameters such as photon-output-coupling efficiency, detailed photon flight statistics, and photon-output distribution patterns. It is speculated that the method can easily be extended to development of LED lamps and packages.

© 2001 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate

Tsung-Xian Lee, Ko-Fon Gao, Wei-Ting Chien, and Ching-Cherng Sun
Opt. Express 15(11) 6670-6676 (2007)

Light-extraction efficiency control in AlGaN-based deep-ultraviolet flip-chip light-emitting diodes: a comparison to InGaN-based visible flip-chip light-emitting diodes

Keon Hwa Lee, Hyun Jung Park, Seung Hwan Kim, Mojtaba Asadirad, Yong-Tae Moon, Joon Seop Kwak, and Jae-Hyun Ryou
Opt. Express 23(16) 20340-20349 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription