Abstract

A noncollinear second-harmonic-generation scheme that includes two gratings and a nonlinear optical crystal generates temporal solitons with a noncollinear phase mismatch and frequency-chirped laser pulses. At 180-fs pulse duration, 25-GW/cm2 fundamental intensity, -7647.3-m-1 wave-vector mismatch, 66-fs delay time, and ±3.07163 × 1025 s-2 frequency-chirp rates, temporal solitons with durations from 139 to 155 fs and Gaussian shapes can be obtained. The corresponding conversion efficiency is greater than 40%.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. E. Martinez, “A chromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron. 25, 2464–2468 (1989).
    [CrossRef]
  2. T. Zhang, M. Yonemura, “Efficient type I second-harmonic generation of subpicosecond laser pulses with a series of alternating nonlinear and delay crystals,” Appl. Opt. 37, 1647–1650 (1998).
    [CrossRef]
  3. R. J. Gehr, M. W. Kimmel, A. V. Smith, “Simultaneous spatial and temporal walk-off compensation in frequency-doubling femtosecond pulses in β-BaB2O4,” Opt. Lett. 23, 1298–1300 (1998).
    [CrossRef]
  4. A. Stabinis, G. Valiulis, E. A. Ibragimov, “Effective sum frequency pulse compression in nonlinear crystals,” Opt. Commun. 301, 301–306 (1991).
    [CrossRef]
  5. Y. Wang, R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A. 41, 5645–5649 (1990).
    [CrossRef] [PubMed]
  6. T. Zhang, Y. Kato, H. Daido, “Efficient third harmonic generation of a picosecond laser pulse with time delay,” IEEE J. Quantum Electron. 32, 127–136 (1996).
    [CrossRef]
  7. T. Zhang, Y. Kato, H. Daido, “Numerical study of fourth-harmonic generation of a picosecond laser pulse with time predelay,” J. Opt. Soc. Am. B 13, 1166–1178 (1996).
    [CrossRef]
  8. G. Veitas, A. Dubietis, G. Valiulis, D. Podenas, G. Tamosauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
    [CrossRef]
  9. R. Danielius, A. Dubietis, A. Piskarskas, G. Valiulis, A. Varanavicius, “Generation of compressed 600–720-nm tunable femtosecond pulses by transient frequency mixing in a β-barium borate crystal,” Opt. Lett. 21, 216–218 (1996).
    [CrossRef] [PubMed]
  10. A. Dubietis, G. Valiulis, G. Tamosauskas, R. Danielius, A. Piskarskas, “Nonlinear second-harmonic pulse compression with titles pulses,” Opt. Lett. 22, 1071–1073 (1997).
    [CrossRef] [PubMed]
  11. A. Dubietis, G. Valiulis, R. Danielius, A. Piskarskas, “Fundamental-frequency pulse compression through cascaded second-order processes in a type II phase-matched second-harmonic generator,” Opt. Lett. 21, 1262–1264 (1996).
    [CrossRef] [PubMed]
  12. P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998).
    [CrossRef]
  13. G. Valiulis, A. Dubietis, R. Danielius, D. Caironi, A. Visconti, P. Di Trapani, “Temporal solitons in χ(2) materials with titled pulses,” J. Opt. Soc. Am. B 16, 722–731 (1999).
    [CrossRef]
  14. T. R. Zhang, H. R. Choo, M. C. Downer, “Phase and group velocity matching for second harmonic generation of femtosecond pulses,” Appl. Opt. 29, 3927–3933 (1990).
    [CrossRef] [PubMed]
  15. T. Zhang, M. Yonemura, “Pulse compression with a noncollinear type I frequency doubling crystal,” Jpn. J. Appl. Phys. 37, 542–543 (1998).
    [CrossRef]
  16. R. W. Short, S. Skupsky, “Frequency conversion of broad-bandwidth laser light,” IEEE J. Quantum Electron. 26, 580–588 (1990).
    [CrossRef]
  17. A. C. L. Boscheron, C. J. Sauteret, A. Migus, “Efficient broadband sum frequency based on controlled phase-modulated input fields: theory for 351-nm ultrabroadband or ultrashort-pulse generation,” J. Opt. Soc. Am. B 13, 818–826 (1996).
    [CrossRef]
  18. K. Osvay, I. N. Ross, “Broadband sum-frequency generation by chirp-assisted group-velocity matching,” J. Opt. Soc. Am. B 13, 1431–1438 (1996).
    [CrossRef]
  19. T. Zhang, M. Aoyama, K. Yamakawa, “Noncollinear chirp-compensated second-harmonic generation with subpicosecond laser pulses,” Jpn. J. Appl. Phys. 39, 1146–1150 (2000).
    [CrossRef]
  20. E. Ibragimov, A. Struthers, “Three-wave solution interaction of ultrashort pulses in quadratic media,” J. Opt. Soc. Am. B 14, 1472–1479 (1997).
    [CrossRef]
  21. M. Aoyama, T. Zhang, M. Tsukakoshi, K. Yamakawa, “Efficient noncollinear second-harmonic generation with proper frequency chirp and tilted pulse fronts of femtosecond laser pulses,” Jpn. J. Appl. Phys. 39, 2651–2652 (2000).
    [CrossRef]

2000 (2)

T. Zhang, M. Aoyama, K. Yamakawa, “Noncollinear chirp-compensated second-harmonic generation with subpicosecond laser pulses,” Jpn. J. Appl. Phys. 39, 1146–1150 (2000).
[CrossRef]

M. Aoyama, T. Zhang, M. Tsukakoshi, K. Yamakawa, “Efficient noncollinear second-harmonic generation with proper frequency chirp and tilted pulse fronts of femtosecond laser pulses,” Jpn. J. Appl. Phys. 39, 2651–2652 (2000).
[CrossRef]

1999 (1)

1998 (4)

R. J. Gehr, M. W. Kimmel, A. V. Smith, “Simultaneous spatial and temporal walk-off compensation in frequency-doubling femtosecond pulses in β-BaB2O4,” Opt. Lett. 23, 1298–1300 (1998).
[CrossRef]

P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998).
[CrossRef]

T. Zhang, M. Yonemura, “Pulse compression with a noncollinear type I frequency doubling crystal,” Jpn. J. Appl. Phys. 37, 542–543 (1998).
[CrossRef]

T. Zhang, M. Yonemura, “Efficient type I second-harmonic generation of subpicosecond laser pulses with a series of alternating nonlinear and delay crystals,” Appl. Opt. 37, 1647–1650 (1998).
[CrossRef]

1997 (3)

1996 (6)

1991 (1)

A. Stabinis, G. Valiulis, E. A. Ibragimov, “Effective sum frequency pulse compression in nonlinear crystals,” Opt. Commun. 301, 301–306 (1991).
[CrossRef]

1990 (3)

Y. Wang, R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A. 41, 5645–5649 (1990).
[CrossRef] [PubMed]

T. R. Zhang, H. R. Choo, M. C. Downer, “Phase and group velocity matching for second harmonic generation of femtosecond pulses,” Appl. Opt. 29, 3927–3933 (1990).
[CrossRef] [PubMed]

R. W. Short, S. Skupsky, “Frequency conversion of broad-bandwidth laser light,” IEEE J. Quantum Electron. 26, 580–588 (1990).
[CrossRef]

1989 (1)

Q. E. Martinez, “A chromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron. 25, 2464–2468 (1989).
[CrossRef]

Aoyama, M.

T. Zhang, M. Aoyama, K. Yamakawa, “Noncollinear chirp-compensated second-harmonic generation with subpicosecond laser pulses,” Jpn. J. Appl. Phys. 39, 1146–1150 (2000).
[CrossRef]

M. Aoyama, T. Zhang, M. Tsukakoshi, K. Yamakawa, “Efficient noncollinear second-harmonic generation with proper frequency chirp and tilted pulse fronts of femtosecond laser pulses,” Jpn. J. Appl. Phys. 39, 2651–2652 (2000).
[CrossRef]

Boscheron, A. C. L.

Caironi, D.

G. Valiulis, A. Dubietis, R. Danielius, D. Caironi, A. Visconti, P. Di Trapani, “Temporal solitons in χ(2) materials with titled pulses,” J. Opt. Soc. Am. B 16, 722–731 (1999).
[CrossRef]

P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998).
[CrossRef]

Choo, H. R.

Daido, H.

T. Zhang, Y. Kato, H. Daido, “Efficient third harmonic generation of a picosecond laser pulse with time delay,” IEEE J. Quantum Electron. 32, 127–136 (1996).
[CrossRef]

T. Zhang, Y. Kato, H. Daido, “Numerical study of fourth-harmonic generation of a picosecond laser pulse with time predelay,” J. Opt. Soc. Am. B 13, 1166–1178 (1996).
[CrossRef]

Danielius, R.

Di Trapani, P.

G. Valiulis, A. Dubietis, R. Danielius, D. Caironi, A. Visconti, P. Di Trapani, “Temporal solitons in χ(2) materials with titled pulses,” J. Opt. Soc. Am. B 16, 722–731 (1999).
[CrossRef]

P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998).
[CrossRef]

Downer, M. C.

Dragila, R.

Y. Wang, R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A. 41, 5645–5649 (1990).
[CrossRef] [PubMed]

Dubietis, A.

Gehr, R. J.

Ibragimov, E.

Ibragimov, E. A.

A. Stabinis, G. Valiulis, E. A. Ibragimov, “Effective sum frequency pulse compression in nonlinear crystals,” Opt. Commun. 301, 301–306 (1991).
[CrossRef]

Kato, Y.

T. Zhang, Y. Kato, H. Daido, “Efficient third harmonic generation of a picosecond laser pulse with time delay,” IEEE J. Quantum Electron. 32, 127–136 (1996).
[CrossRef]

T. Zhang, Y. Kato, H. Daido, “Numerical study of fourth-harmonic generation of a picosecond laser pulse with time predelay,” J. Opt. Soc. Am. B 13, 1166–1178 (1996).
[CrossRef]

Kimmel, M. W.

Martinez, Q. E.

Q. E. Martinez, “A chromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron. 25, 2464–2468 (1989).
[CrossRef]

Migus, A.

Osvay, K.

Piskarskas, A.

Podenas, D.

G. Veitas, A. Dubietis, G. Valiulis, D. Podenas, G. Tamosauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

Ross, I. N.

Sauteret, C. J.

Short, R. W.

R. W. Short, S. Skupsky, “Frequency conversion of broad-bandwidth laser light,” IEEE J. Quantum Electron. 26, 580–588 (1990).
[CrossRef]

Skupsky, S.

R. W. Short, S. Skupsky, “Frequency conversion of broad-bandwidth laser light,” IEEE J. Quantum Electron. 26, 580–588 (1990).
[CrossRef]

Smith, A. V.

Stabinis, A.

A. Stabinis, G. Valiulis, E. A. Ibragimov, “Effective sum frequency pulse compression in nonlinear crystals,” Opt. Commun. 301, 301–306 (1991).
[CrossRef]

Struthers, A.

Tamosauskas, G.

G. Veitas, A. Dubietis, G. Valiulis, D. Podenas, G. Tamosauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

A. Dubietis, G. Valiulis, G. Tamosauskas, R. Danielius, A. Piskarskas, “Nonlinear second-harmonic pulse compression with titles pulses,” Opt. Lett. 22, 1071–1073 (1997).
[CrossRef] [PubMed]

Tsukakoshi, M.

M. Aoyama, T. Zhang, M. Tsukakoshi, K. Yamakawa, “Efficient noncollinear second-harmonic generation with proper frequency chirp and tilted pulse fronts of femtosecond laser pulses,” Jpn. J. Appl. Phys. 39, 2651–2652 (2000).
[CrossRef]

Valiulis, G.

Varanavicius, A.

Veitas, G.

G. Veitas, A. Dubietis, G. Valiulis, D. Podenas, G. Tamosauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

Visconti, A.

Wang, Y.

Y. Wang, R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A. 41, 5645–5649 (1990).
[CrossRef] [PubMed]

Yamakawa, K.

M. Aoyama, T. Zhang, M. Tsukakoshi, K. Yamakawa, “Efficient noncollinear second-harmonic generation with proper frequency chirp and tilted pulse fronts of femtosecond laser pulses,” Jpn. J. Appl. Phys. 39, 2651–2652 (2000).
[CrossRef]

T. Zhang, M. Aoyama, K. Yamakawa, “Noncollinear chirp-compensated second-harmonic generation with subpicosecond laser pulses,” Jpn. J. Appl. Phys. 39, 1146–1150 (2000).
[CrossRef]

Yonemura, M.

T. Zhang, M. Yonemura, “Efficient type I second-harmonic generation of subpicosecond laser pulses with a series of alternating nonlinear and delay crystals,” Appl. Opt. 37, 1647–1650 (1998).
[CrossRef]

T. Zhang, M. Yonemura, “Pulse compression with a noncollinear type I frequency doubling crystal,” Jpn. J. Appl. Phys. 37, 542–543 (1998).
[CrossRef]

Zhang, T.

M. Aoyama, T. Zhang, M. Tsukakoshi, K. Yamakawa, “Efficient noncollinear second-harmonic generation with proper frequency chirp and tilted pulse fronts of femtosecond laser pulses,” Jpn. J. Appl. Phys. 39, 2651–2652 (2000).
[CrossRef]

T. Zhang, M. Aoyama, K. Yamakawa, “Noncollinear chirp-compensated second-harmonic generation with subpicosecond laser pulses,” Jpn. J. Appl. Phys. 39, 1146–1150 (2000).
[CrossRef]

T. Zhang, M. Yonemura, “Pulse compression with a noncollinear type I frequency doubling crystal,” Jpn. J. Appl. Phys. 37, 542–543 (1998).
[CrossRef]

T. Zhang, M. Yonemura, “Efficient type I second-harmonic generation of subpicosecond laser pulses with a series of alternating nonlinear and delay crystals,” Appl. Opt. 37, 1647–1650 (1998).
[CrossRef]

T. Zhang, Y. Kato, H. Daido, “Efficient third harmonic generation of a picosecond laser pulse with time delay,” IEEE J. Quantum Electron. 32, 127–136 (1996).
[CrossRef]

T. Zhang, Y. Kato, H. Daido, “Numerical study of fourth-harmonic generation of a picosecond laser pulse with time predelay,” J. Opt. Soc. Am. B 13, 1166–1178 (1996).
[CrossRef]

Zhang, T. R.

Appl. Opt. (2)

IEEE J. Quantum Electron. (3)

T. Zhang, Y. Kato, H. Daido, “Efficient third harmonic generation of a picosecond laser pulse with time delay,” IEEE J. Quantum Electron. 32, 127–136 (1996).
[CrossRef]

Q. E. Martinez, “A chromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron. 25, 2464–2468 (1989).
[CrossRef]

R. W. Short, S. Skupsky, “Frequency conversion of broad-bandwidth laser light,” IEEE J. Quantum Electron. 26, 580–588 (1990).
[CrossRef]

J. Opt. Soc. Am. B (5)

Jpn. J. Appl. Phys. (3)

T. Zhang, M. Aoyama, K. Yamakawa, “Noncollinear chirp-compensated second-harmonic generation with subpicosecond laser pulses,” Jpn. J. Appl. Phys. 39, 1146–1150 (2000).
[CrossRef]

M. Aoyama, T. Zhang, M. Tsukakoshi, K. Yamakawa, “Efficient noncollinear second-harmonic generation with proper frequency chirp and tilted pulse fronts of femtosecond laser pulses,” Jpn. J. Appl. Phys. 39, 2651–2652 (2000).
[CrossRef]

T. Zhang, M. Yonemura, “Pulse compression with a noncollinear type I frequency doubling crystal,” Jpn. J. Appl. Phys. 37, 542–543 (1998).
[CrossRef]

Opt. Commun. (2)

A. Stabinis, G. Valiulis, E. A. Ibragimov, “Effective sum frequency pulse compression in nonlinear crystals,” Opt. Commun. 301, 301–306 (1991).
[CrossRef]

G. Veitas, A. Dubietis, G. Valiulis, D. Podenas, G. Tamosauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A. (1)

Y. Wang, R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A. 41, 5645–5649 (1990).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with tilted pulses,” Phys. Rev. Lett. 81, 570–573 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of noncollinear type I SHG for generation of temporal solitons.

Fig. 2
Fig. 2

Conversion properties of the SH pulse at delay times of (a) 44, (b) 66, (c) 110, and (d) 155 fs. The overall fundamental intensity is 25 GW/cm2. The temporal shapes of the fundamental pulses are Gaussian.

Fig. 3
Fig. 3

Temporal shapes of the fundamental and the SH pulses under conditions of 25-GW/cm2 fundamental intensity, 3-mm crystal thickness, and 66-fs delay time.

Fig. 4
Fig. 4

Conversion properties of the SH pulse at fundamental intensities of (a) 20, (b) 25, and (c) 30 GW/cm2. The delay time is 66 fs.

Tables (1)

Tables Icon

Table 1 Parameters of Two Gratingsa

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ΔΦz=ΔΦc+Δkz,
ΔΦc=Φ2-Φα-Φβ,
Δk=k2-k1cos α+cos β,
Φj=12 μjtj-zvj2,
t2=t,  tα=t-td/2,  tβ=t+td/2,
ΔΦz=Δkz+ΔΦc|z=0+ΔΦczz=0z+122ΔΦcz2z=0z2++=Δkz+t22μ2-μβ-μα-td28μβ+μα-ttd2μβ-μα-μ2v2-μβv1 cos β-μαv1 cos αt-μβv1 cos β - μαv1 cos αtd2z+12μ2v22 - μβv1 cos β2 - μαv1 cos α2z2++.
μ2=μβ+μα.
td-2Δkv1μβcos β-μαcos α.
tdμβcos2 β+μαcos2 αdv1-2Δkv1μβcos β-μαcos α,
Ejz, t=Ajz, texpiΦjz, t,
Aαz+1v1 cos αAαt-i g12 cos α2Aαt2=-iKαAβ*A2 exp-iΔΦzz, t, Aβz+1v1 cos βAβt-i g12 cos β2Aβt2=-iKβAα*A2 exp-iΔΦzz, t, A2z+1v2A2t-i g222A2t2=-iK2AαAβexpiΔΦzz, t,

Metrics