Abstract

We have constructed an all-optical tracking novelty filter based on the dynamic holographic properties of an efficient and fast infrared-sensitive photorefractive polymer. The photorefractive polymer was used in a two-beam coupling geometry. The polymer had a gain coefficient of 175 cm-1 at a wavelength of 780 nm and an applied field of 72 V/µm. In contrast to what has been observed in photorefractive crystals, the gain coefficient and the filter contrast are largely independent of the writing beam’s intensity ratio. We show images of a swinging pendulum observed through the novelty filter.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kohonen, Self-Organization and Associative Memory (Springer-Verlag, New York, 1984), Chap. 4.
  2. D. Z. Anderson, D. M. Lininger, J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
    [CrossRef] [PubMed]
  3. M. Cronin-Golomb, A. M. Biernacki, C. Lin, H. Kong, “Photorefractive time differentiation of coherent optical images,” Opt. Lett. 12, 1029–1031 (1987).
    [CrossRef] [PubMed]
  4. R. S. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
    [CrossRef]
  5. P. Delaye, G. Roosen, “Evaluation of a photorefractive two-beam coupling novelty filter,” Opt. Commun. 165, 133–151 (1999).
    [CrossRef]
  6. B. Kippelen, K. Meerholz, N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa, S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1997).
  7. B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).
  8. B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng.34, 2213–2223 (1995).
  9. D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Röckel, S. R. Marder, “Transillumination imaging through scattering media by use of photorefractive polymers,” Opt. Lett. 23, 153–155 (1998).
    [CrossRef]
  10. R. Lemke, “Knoevenagel condensation in dimethylformamide,” Synthesis359–361 (1974).
    [CrossRef]
  11. A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15, 901–904 (1998).
    [CrossRef]
  12. D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, C. Samyn, “Influence of chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites,” J. Chem. Phys. 112, 11030–11037 (2000).
    [CrossRef]
  13. M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, “Demonstrator concepts and performance of a photorefractive optical novelty filter,” Opt. Mater. 4, 376–380 (1995).
    [CrossRef]
  14. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  15. A. Grunnet-Jepsen, C. L. Thompson, W. E. Moerner, “Measurement of the spatial phase shift in high-gain photorefractive materials,” Opt. Lett. 22, 874–876 (1997).
    [CrossRef] [PubMed]
  16. A. Goonesekera, D. Wright, W. E. Moerner, “Image amplification and novelty filtering with a photorefractive polymer,” Appl. Phys. Lett. 76, 3358–3360 (2000).
    [CrossRef]
  17. D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
    [CrossRef]
  18. M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
    [CrossRef]

2000

D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, C. Samyn, “Influence of chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites,” J. Chem. Phys. 112, 11030–11037 (2000).
[CrossRef]

A. Goonesekera, D. Wright, W. E. Moerner, “Image amplification and novelty filtering with a photorefractive polymer,” Appl. Phys. Lett. 76, 3358–3360 (2000).
[CrossRef]

1999

P. Delaye, G. Roosen, “Evaluation of a photorefractive two-beam coupling novelty filter,” Opt. Commun. 165, 133–151 (1999).
[CrossRef]

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

1998

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15, 901–904 (1998).
[CrossRef]

D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Röckel, S. R. Marder, “Transillumination imaging through scattering media by use of photorefractive polymers,” Opt. Lett. 23, 153–155 (1998).
[CrossRef]

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

1997

1995

M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, “Demonstrator concepts and performance of a photorefractive optical novelty filter,” Opt. Mater. 4, 376–380 (1995).
[CrossRef]

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng.34, 2213–2223 (1995).

1988

R. S. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
[CrossRef]

1987

1974

R. Lemke, “Knoevenagel condensation in dimethylformamide,” Synthesis359–361 (1974).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Anderson, D. Z.

Biernacki, A. M.

Casperson, J. D.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Cronin-Golomb, M.

Cudney, R. S.

R. S. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
[CrossRef]

DeClue, M.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Delaye, P.

P. Delaye, G. Roosen, “Evaluation of a photorefractive two-beam coupling novelty filter,” Opt. Commun. 165, 133–151 (1999).
[CrossRef]

Denz, C.

M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, “Demonstrator concepts and performance of a photorefractive optical novelty filter,” Opt. Mater. 4, 376–380 (1995).
[CrossRef]

Diaz-Garcia, M. A.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Enami, Y.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

Erskine, L.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

Feinberg, J.

R. S. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
[CrossRef]

D. Z. Anderson, D. M. Lininger, J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
[CrossRef] [PubMed]

Glazer, E.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

Goonesekera, A.

A. Goonesekera, D. Wright, W. E. Moerner, “Image amplification and novelty filtering with a photorefractive polymer,” Appl. Phys. Lett. 76, 3358–3360 (2000).
[CrossRef]

Grunnet-Jepsen, A.

Guillemet, G.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

Hendrickx, E.

D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, C. Samyn, “Influence of chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites,” J. Chem. Phys. 112, 11030–11037 (2000).
[CrossRef]

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

Kippelen, B.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Röckel, S. R. Marder, “Transillumination imaging through scattering media by use of photorefractive polymers,” Opt. Lett. 23, 153–155 (1998).
[CrossRef]

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng.34, 2213–2223 (1995).

B. Kippelen, K. Meerholz, N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa, S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1997).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kohonen, T.

T. Kohonen, Self-Organization and Associative Memory (Springer-Verlag, New York, 1984), Chap. 4.

Kong, H.

Kukhtarev, N. V.

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng.34, 2213–2223 (1995).

Lemke, R.

R. Lemke, “Knoevenagel condensation in dimethylformamide,” Synthesis359–361 (1974).
[CrossRef]

Lin, C.

Lininger, D. M.

Maldonado, J. L.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

Marder, S. R.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Röckel, S. R. Marder, “Transillumination imaging through scattering media by use of photorefractive polymers,” Opt. Lett. 23, 153–155 (1998).
[CrossRef]

Meerholz, K.

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng.34, 2213–2223 (1995).

B. Kippelen, K. Meerholz, N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa, S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1997).

Moerner, W. E.

A. Goonesekera, D. Wright, W. E. Moerner, “Image amplification and novelty filtering with a photorefractive polymer,” Appl. Phys. Lett. 76, 3358–3360 (2000).
[CrossRef]

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15, 901–904 (1998).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, W. E. Moerner, “Measurement of the spatial phase shift in high-gain photorefractive materials,” Opt. Lett. 22, 874–876 (1997).
[CrossRef] [PubMed]

Persoons, A.

D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, C. Samyn, “Influence of chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites,” J. Chem. Phys. 112, 11030–11037 (2000).
[CrossRef]

Peyghambarian, N.

D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Röckel, S. R. Marder, “Transillumination imaging through scattering media by use of photorefractive polymers,” Opt. Lett. 23, 153–155 (1998).
[CrossRef]

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng.34, 2213–2223 (1995).

B. Kippelen, K. Meerholz, N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa, S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1997).

Pierce, R. M.

R. S. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
[CrossRef]

Rauch, T.

M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, “Demonstrator concepts and performance of a photorefractive optical novelty filter,” Opt. Mater. 4, 376–380 (1995).
[CrossRef]

Röckel, H.

D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Röckel, S. R. Marder, “Transillumination imaging through scattering media by use of photorefractive polymers,” Opt. Lett. 23, 153–155 (1998).
[CrossRef]

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

Roosen, G.

P. Delaye, G. Roosen, “Evaluation of a photorefractive two-beam coupling novelty filter,” Opt. Commun. 165, 133–151 (1999).
[CrossRef]

Samyn, C.

D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, C. Samyn, “Influence of chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites,” J. Chem. Phys. 112, 11030–11037 (2000).
[CrossRef]

Sandalphon,

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng.34, 2213–2223 (1995).

Savina, O.

Sedlatschek, M.

M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, “Demonstrator concepts and performance of a photorefractive optical novelty filter,” Opt. Mater. 4, 376–380 (1995).
[CrossRef]

Smith, B.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

Steele, D. D.

D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Röckel, S. R. Marder, “Transillumination imaging through scattering media by use of photorefractive polymers,” Opt. Lett. 23, 153–155 (1998).
[CrossRef]

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

Sukhomlinova, L. I.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

Thompson, C. L.

Tschudi, T.

M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, “Demonstrator concepts and performance of a photorefractive optical novelty filter,” Opt. Mater. 4, 376–380 (1995).
[CrossRef]

Twieg, R. J.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15, 901–904 (1998).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Van den Broeck, K.

D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, C. Samyn, “Influence of chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites,” J. Chem. Phys. 112, 11030–11037 (2000).
[CrossRef]

Van Steenwinckel, D.

D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, C. Samyn, “Influence of chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites,” J. Chem. Phys. 112, 11030–11037 (2000).
[CrossRef]

Volodin, B. L.

D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Röckel, S. R. Marder, “Transillumination imaging through scattering media by use of photorefractive polymers,” Opt. Lett. 23, 153–155 (1998).
[CrossRef]

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng.34, 2213–2223 (1995).

Wang, J. F.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

Wright, D.

A. Goonesekera, D. Wright, W. E. Moerner, “Image amplification and novelty filtering with a photorefractive polymer,” Appl. Phys. Lett. 76, 3358–3360 (2000).
[CrossRef]

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Yao, Y. J.

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

Appl. Phys. Lett.

A. Goonesekera, D. Wright, W. E. Moerner, “Image amplification and novelty filtering with a photorefractive polymer,” Appl. Phys. Lett. 76, 3358–3360 (2000).
[CrossRef]

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Bell. Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Chem. Mater.

M. A. Diaz-Garcia, D. Wright, J. D. Casperson, B. Smith, E. Glazer, W. E. Moerner, L. I. Sukhomlinova, R. J. Twieg, “Photorefractive properties of poly(N-vinylcarbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784–1791 (1999).
[CrossRef]

J. Chem. Phys.

D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, C. Samyn, “Influence of chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites,” J. Chem. Phys. 112, 11030–11037 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Nature

R. S. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature 332, 424–426 (1988).
[CrossRef]

Opt. Commun.

P. Delaye, G. Roosen, “Evaluation of a photorefractive two-beam coupling novelty filter,” Opt. Commun. 165, 133–151 (1999).
[CrossRef]

Opt. Eng.

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng.34, 2213–2223 (1995).

Opt. Lett.

Opt. Mater.

M. Sedlatschek, T. Rauch, C. Denz, T. Tschudi, “Demonstrator concepts and performance of a photorefractive optical novelty filter,” Opt. Mater. 4, 376–380 (1995).
[CrossRef]

Science

B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

Synthesis

R. Lemke, “Knoevenagel condensation in dimethylformamide,” Synthesis359–361 (1974).
[CrossRef]

Other

T. Kohonen, Self-Organization and Associative Memory (Springer-Verlag, New York, 1984), Chap. 4.

B. Kippelen, K. Meerholz, N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa, S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Molecular structure of the PR polymer components: 1, chromophore Lemke-E; 2, N-ethylcarbazole; 3, poly(N-vinylcarbazole); 4, (2,4,7-trinitro-9-fluorenylidene)malononitrile.

Fig. 2
Fig. 2

Filled circles, dependence of the steady-state gain coefficient on the applied field at 780 nm. The applied field was increased stepwise by 9 V/µm every 2 min. Inset, geometry of the constructed novelty filter. HV, high voltage.

Fig. 3
Fig. 3

Dependence of two-beam coupling gain coefficient Γ and index modulation amplitude Δn, from four-wave mixing experiments, on intensity modulation m at a field of 40 V/µm.

Fig. 4
Fig. 4

Dynamics of the two-beam coupling experiment: Extinction of the image beam after the second writing beam is unblocked. The two beams had equal intensities of 2 W/cm2. The material was preilluminated with one writing beam on and the field applied for 15 min; then the second writing beam was unblocked and the decay of the first beam was monitored.

Fig. 5
Fig. 5

Temporal response of the novelty filter recorded with a diode detector at three applied fields. First, the sample is illuminated by the strong writing beam and with an electric field applied (1); because no diffraction occurs, the observed intensity is zero. At 2 the image beam is unblocked, leading to a detected intensity that fades away as the hologram is written. Then, after 10-s writing time, the image-bearing beam is blocked again (3). A fraction of the intensity of the strong second writing beam then is diffracted into the direction of the image-bearing beam, and this diffracted intensity disappears as the PR grating is erased (4).

Fig. 6
Fig. 6

Images of a pendulum observed through a novelty filter. The interference fringes in the background originate from the collimating lenses in the commercial diode laser assembly. In (a) the field is off. In (b)–(d) a field of 75 V/µm is applied over the sample. See text for the exact experimental description. Viewed through the filter, the pendulum has its highest intensity when it has its largest speed, at the center of the motion, and is less visible at the points of maximum deflection where the speed is less.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Γd=cos α1lnI1tI20I1tI2=0-cos α2lnI2tI10I2tI1=0,
Esc=m E02+ED21+EDEq2+E0Eq21/2,
Δn=NAμ2Δα+BμβEscEext,
Γ=4πλe¯1·e¯2*Δn sin θ,

Metrics