Abstract

We have constructed an all-optical tracking novelty filter based on the dynamic holographic properties of an efficient and fast infrared-sensitive photorefractive polymer. The photorefractive polymer was used in a two-beam coupling geometry. The polymer had a gain coefficient of 175 cm-1 at a wavelength of 780 nm and an applied field of 72 V/µm. In contrast to what has been observed in photorefractive crystals, the gain coefficient and the filter contrast are largely independent of the writing beam’s intensity ratio. We show images of a swinging pendulum observed through the novelty filter.

© 2001 Optical Society of America

Full Article  |  PDF Article
Related Articles
Holographic index-contrast prediction in a photorefractive polymer composite based on electric-field-induced birefringence

John D. Shakos, Mark D. Rahn, Dave P. West, and Kaleemullah Khand
J. Opt. Soc. Am. B 17(3) 373-380 (2000)

Two-beam coupling measurements of grating phase in a photorefractive polymer

C. A. Walsh and W. E. Moerner
J. Opt. Soc. Am. B 9(9) 1642-1647 (1992)

Poly(silane)-based high-mobility photorefractive polymers

S. M. Silence, J. C. Scott, F. Hache, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, and W. E. Moerner
J. Opt. Soc. Am. B 10(12) 2306-2312 (1993)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription