Abstract

The benefits of retrieving ozone concentration profiles by a use of a single Raman signal rather than the Raman differential absorption lidar (DIAL) technique are investigated by numerical simulations applied either to KrF- (248 nm) or to quadrupled Nd:YAG- (266 nm) based Raman lidars, which are used for both daytime and nighttime monitoring of the tropospheric water-vapor mixing ratio. It is demonstrated that ozone concentration profiles of adequate accuracy and spatial and temporal resolution can be retrieved under low aerosol loading by a single Raman lidar because of the large value of the ozone absorption cross section both at 248 nm and at 266 nm. Then experimental measurements of Raman signals provided by the KrF-based lidar operating at the University of Lecce (40° 20′N, 18°6′E) are used to retrieve ozone concentration profiles by use of the Raman DIAL technique and the nitrogen Raman signal.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Koehler, S. A. Hajost, “The Montreal Protocol: a dynamic agreement for protecting the ozone layer,” Ambio 19, 82–86 (1990).
  2. K. M. Sarma, “Protection of the ozone layer-A success study of UNEP,” Linkages J. 3, 6–10 (1998).
  3. K. Ya. Kondratyev, C. A. Varotsos, “Total and tropospheric ozone changes: observations and numerical modelling,” Nuovo Cimento C 22, 219–246 (1999).
  4. M. H. Proffitt, A. O. Langford, “Groud-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere,” Appl. Opt. 36, 2568–2585 (1997).
  5. G. Megie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements at atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
    [CrossRef] [PubMed]
  6. O. Uchino, M. Tokunaga, M. Maeda, Y. Miyazoe, “Differential absorption lidar measurements of tropospheric ozone with excimer–Raman hybrid laser,” Opt. Lett. 8, 347–239 (1983).
    [CrossRef] [PubMed]
  7. A. Papayannis, G. Ancellet, J. Pelon, G. Megie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
    [CrossRef] [PubMed]
  8. D. Kim, H. Cha, J. Park, J. Lee, I. Veselovskii, “Daytime Raman lidar for water vapor and ozone concentration measurements,” J. Korean Phys. Soc. 30, 458–462 (1997).
  9. M. R. Gross, T. J. McGee, U. N. Singh, P. Kimvilakani, “Measurements of stratospheric aerosols with a combined elastic-Raman–backscatter lidar,” Appl. Opt. 34, 6915–6924 (1995).
    [CrossRef] [PubMed]
  10. D. Renaut, J. C. Pourny, R. Capitini, “Daytime Raman-lidar measurements of water vapor,” Opt. Lett. 5, 233–235 (1980).
    [CrossRef] [PubMed]
  11. S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Sci. 66, 1288–1292 (1985).
    [CrossRef]
  12. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
    [CrossRef]
  13. J. Cooney, K. Petri, A. Salik, “Measurements of high resolution atmospheric water-vapor profiles by use of a solar blind Raman lidar,” Appl. Opt. 24, 104–108 (1985).
    [CrossRef] [PubMed]
  14. W. E. Eichinger, D. I. Cooper, F. L. Archuletta, D. Hof, D. B. Holtkamp, R. R. Karl, C. R. Quick, J. Tiee, “Development of a scanning, solar-blind, water Raman lidar,” Appl. Opt. 33, 3923–3032 (1994).
    [CrossRef] [PubMed]
  15. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 149–151 (1990).
  16. Ontar Corporation, 9 Village Way, North Andover, Mass. 01845-2000.
  17. Shardanand, “Nitrogen induced absorption of oxygen in the Herzberg continuum,” J. Quant. Spectrosc. Radiat. Transfer 18, 525–530 (1977).
    [CrossRef]
  18. Z. Liu, P. Voelger, N. Sugimoto, “Simulation of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment System,” Appl. Opt. 39, 3120–3137 (2000).
    [CrossRef]
  19. Y. Sasano, E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989).
    [CrossRef] [PubMed]

2000 (1)

1999 (1)

K. Ya. Kondratyev, C. A. Varotsos, “Total and tropospheric ozone changes: observations and numerical modelling,” Nuovo Cimento C 22, 219–246 (1999).

1998 (2)

1997 (2)

M. H. Proffitt, A. O. Langford, “Groud-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere,” Appl. Opt. 36, 2568–2585 (1997).

D. Kim, H. Cha, J. Park, J. Lee, I. Veselovskii, “Daytime Raman lidar for water vapor and ozone concentration measurements,” J. Korean Phys. Soc. 30, 458–462 (1997).

1995 (1)

1994 (1)

1990 (3)

A. Papayannis, G. Ancellet, J. Pelon, G. Megie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
[CrossRef] [PubMed]

J. Koehler, S. A. Hajost, “The Montreal Protocol: a dynamic agreement for protecting the ozone layer,” Ambio 19, 82–86 (1990).

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 149–151 (1990).

1989 (1)

1985 (2)

J. Cooney, K. Petri, A. Salik, “Measurements of high resolution atmospheric water-vapor profiles by use of a solar blind Raman lidar,” Appl. Opt. 24, 104–108 (1985).
[CrossRef] [PubMed]

S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Sci. 66, 1288–1292 (1985).
[CrossRef]

1983 (1)

1980 (2)

1977 (1)

Shardanand, “Nitrogen induced absorption of oxygen in the Herzberg continuum,” J. Quant. Spectrosc. Radiat. Transfer 18, 525–530 (1977).
[CrossRef]

Ancellet, G.

Ansmann, A.

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 149–151 (1990).

Archuletta, F. L.

Bisson, S. E.

Blair, F. H.

Browell, E. V.

Capitini, R.

Cha, H.

D. Kim, H. Cha, J. Park, J. Lee, I. Veselovskii, “Daytime Raman lidar for water vapor and ozone concentration measurements,” J. Korean Phys. Soc. 30, 458–462 (1997).

Cooney, J.

Cooper, D. I.

Eichinger, W. E.

Goldsmith, J. E. M.

Gross, M. R.

Hajost, S. A.

J. Koehler, S. A. Hajost, “The Montreal Protocol: a dynamic agreement for protecting the ozone layer,” Ambio 19, 82–86 (1990).

Hof, D.

Holtkamp, D. B.

Karl, R. R.

Kim, D.

D. Kim, H. Cha, J. Park, J. Lee, I. Veselovskii, “Daytime Raman lidar for water vapor and ozone concentration measurements,” J. Korean Phys. Soc. 30, 458–462 (1997).

Kimvilakani, P.

Koehler, J.

J. Koehler, S. A. Hajost, “The Montreal Protocol: a dynamic agreement for protecting the ozone layer,” Ambio 19, 82–86 (1990).

Kondratyev, K. Ya.

K. Ya. Kondratyev, C. A. Varotsos, “Total and tropospheric ozone changes: observations and numerical modelling,” Nuovo Cimento C 22, 219–246 (1999).

Langford, A. O.

Lee, J.

D. Kim, H. Cha, J. Park, J. Lee, I. Veselovskii, “Daytime Raman lidar for water vapor and ozone concentration measurements,” J. Korean Phys. Soc. 30, 458–462 (1997).

Liu, Z.

Maeda, M.

McGee, T. J.

Megie, G.

Melfi, S. H.

S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Sci. 66, 1288–1292 (1985).
[CrossRef]

Menzies, R. T.

Miyazoe, Y.

Papayannis, A.

Park, J.

D. Kim, H. Cha, J. Park, J. Lee, I. Veselovskii, “Daytime Raman lidar for water vapor and ozone concentration measurements,” J. Korean Phys. Soc. 30, 458–462 (1997).

Pelon, J.

Petri, K.

Pourny, J. C.

Proffitt, M. H.

Quick, C. R.

Renaut, D.

Riebesell, M.

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 149–151 (1990).

Salik, A.

Sarma, K. M.

K. M. Sarma, “Protection of the ozone layer-A success study of UNEP,” Linkages J. 3, 6–10 (1998).

Sasano, Y.

Shardanand,

Shardanand, “Nitrogen induced absorption of oxygen in the Herzberg continuum,” J. Quant. Spectrosc. Radiat. Transfer 18, 525–530 (1977).
[CrossRef]

Singh, U. N.

Sugimoto, N.

Tiee, J.

Tokunaga, M.

Turner, D. D.

Uchino, O.

Varotsos, C. A.

K. Ya. Kondratyev, C. A. Varotsos, “Total and tropospheric ozone changes: observations and numerical modelling,” Nuovo Cimento C 22, 219–246 (1999).

Veselovskii, I.

D. Kim, H. Cha, J. Park, J. Lee, I. Veselovskii, “Daytime Raman lidar for water vapor and ozone concentration measurements,” J. Korean Phys. Soc. 30, 458–462 (1997).

Voelger, P.

Weitkamp, C.

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 149–151 (1990).

Whiteman, D.

S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Sci. 66, 1288–1292 (1985).
[CrossRef]

Ambio (1)

J. Koehler, S. A. Hajost, “The Montreal Protocol: a dynamic agreement for protecting the ozone layer,” Ambio 19, 82–86 (1990).

Appl. Opt. (9)

G. Megie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements at atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
[CrossRef] [PubMed]

J. Cooney, K. Petri, A. Salik, “Measurements of high resolution atmospheric water-vapor profiles by use of a solar blind Raman lidar,” Appl. Opt. 24, 104–108 (1985).
[CrossRef] [PubMed]

Y. Sasano, E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989).
[CrossRef] [PubMed]

W. E. Eichinger, D. I. Cooper, F. L. Archuletta, D. Hof, D. B. Holtkamp, R. R. Karl, C. R. Quick, J. Tiee, “Development of a scanning, solar-blind, water Raman lidar,” Appl. Opt. 33, 3923–3032 (1994).
[CrossRef] [PubMed]

M. H. Proffitt, A. O. Langford, “Groud-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere,” Appl. Opt. 36, 2568–2585 (1997).

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

Z. Liu, P. Voelger, N. Sugimoto, “Simulation of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment System,” Appl. Opt. 39, 3120–3137 (2000).
[CrossRef]

M. R. Gross, T. J. McGee, U. N. Singh, P. Kimvilakani, “Measurements of stratospheric aerosols with a combined elastic-Raman–backscatter lidar,” Appl. Opt. 34, 6915–6924 (1995).
[CrossRef] [PubMed]

A. Papayannis, G. Ancellet, J. Pelon, G. Megie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
[CrossRef] [PubMed]

Bull. Am. Meteorol. Sci. (1)

S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Sci. 66, 1288–1292 (1985).
[CrossRef]

J. Korean Phys. Soc. (1)

D. Kim, H. Cha, J. Park, J. Lee, I. Veselovskii, “Daytime Raman lidar for water vapor and ozone concentration measurements,” J. Korean Phys. Soc. 30, 458–462 (1997).

J. Quant. Spectrosc. Radiat. Transfer (1)

Shardanand, “Nitrogen induced absorption of oxygen in the Herzberg continuum,” J. Quant. Spectrosc. Radiat. Transfer 18, 525–530 (1977).
[CrossRef]

Linkages J. (1)

K. M. Sarma, “Protection of the ozone layer-A success study of UNEP,” Linkages J. 3, 6–10 (1998).

Nuovo Cimento C (1)

K. Ya. Kondratyev, C. A. Varotsos, “Total and tropospheric ozone changes: observations and numerical modelling,” Nuovo Cimento C 22, 219–246 (1999).

Opt. Lett. (3)

Other (1)

Ontar Corporation, 9 Village Way, North Andover, Mass. 01845-2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Aerosol extinction profile at the KrF laser wavelength calculated by the U.S. Air Force. BETASPEC program (solid curve). Dotted curve, a typical extinction profile that is due to the layering of aerosols in the atmosphere.

Fig. 2
Fig. 2

O3 concentration profiles retrieved by (a) the extinction methods (filled circles) and (b) the DIAL technique (filled circles) for a KrF-based lidar and for η o = 0.015, a 50-mJ laser beam, and 105 laser shots. Smoothing over 45 m has been applied. Solid curves, the assumed O3 concentration.

Fig. 3
Fig. 3

Relative Poissonian noise εN2 and εO2 of the N2 and O2 Raman signals, respectively, generated by consideration of (a) a KrF-based lidar and (b) a quadrupled Nd:YAG-based lidar, both characterized by η o = 0.015, a 50-mJ laser beam, and 105 laser shots.

Fig. 4
Fig. 4

O3 concentration profiles retrieved by (a) the extinction methods (filled circles) and (b) the DIAL technique (filled circles) for a quadrupled Nd:YAG-based lidar characterized by η o = 0.015, a 50-mJ laser beam, and 105 laser shots. Smoothing over 45 m has been applied. Solid curves, the assumed O3 concentration.

Fig. 5
Fig. 5

Relative statistical errors versus altitude (a) of O3 retrieved by Eq. (4) and (b) of O3 retrieved by Eq. (5), for (solid curves) a KrF-based lidar and for (dotted curves) a quadrupled Nd:YAG-based lidar, both characterized by η o = 0.015, a 50-mJ laser beam, and 105 laser shots.

Fig. 6
Fig. 6

O3 profile retrieved (a) by the extinction method (filled circles) and (b) by the Raman DIAL technique (filled circles), for a KrF-based lidar characterized by η o = 0.15, 500-mJ laser beam, and 106 laser shots. The assumed O3 profile is shown by a solid curve in each figure.

Fig. 7
Fig. 7

Relative statistical errors versus altitude of O3 retrieved by (a) the extinction method and (b) the Raman DIAL technique for a KrF-based lidar (solid curves) and a quadrupled Nd:YAG-based lidar (dotted curves), both characterized by η o = 0.15, a 500-mJ laser beam, and 106 laser shots.

Fig. 8
Fig. 8

O3 concentration profiles retrieved by (a) the extinction methods (filled circles) and (b) the DIAL technique (filled circles), for a quadrupled Nd:YAG-based lidar characterized by η o = 0.015, a 50-mJ laser beam, and 105 laser shots. The aerosol profile of Fig. 1 (dotted curve) was used as the so-called real aerosol profile. Smoothing over 45 m has been applied. Solid curves represent the assumed O3 concentration.

Fig. 9
Fig. 9

Relative statistical errors in the O3 measurements of Fig. 8 as a function of the altitude: (ε S )* (solid curve) and ε D (dotted curve).

Fig. 10
Fig. 10

Experimental layout of the KrF-based Raman lidar operating at the University of Lecce (40° 20′N, 18° 6′E). Three different channels are used to monitor the Raman H2O, N2, and O2 backscattered radiation. L’s, lenses; BS’s, beam splitters; D, diaphragm; MR’s, monochromator and photosensor system; MCS’s, multichannel scalers; Disc., discriminator; Ampl.’s, amplifiers.

Fig. 11
Fig. 11

Relative Poissonian noise εN2 and εO2 of the N2 and O2 Raman signals, respectively, monitored on 15 July 1999 at 19 h local time.

Fig. 12
Fig. 12

(a) O3 concentration profile retrieved by the extinction method (filled circles) and by the Raman DIAL technique (open triangles) and (b) relative statistical errors of O3 retrieved by the extinction method (dotted curve) and by the Raman DIAL technique (solid curve).

Tables (1)

Tables Icon

Table 1 Main Lidar Characteristics

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

PRz=ηoλRBOz/z2NRz×exp-0zαLξ+αRξdξ,
αLz+αRz=d/dz lnOzNRz/z2PRz.
αzsRz+sAz+sO3z+sO2z,
NO3zS=1/σO3λL+σO3λN2×d/dz lnOzN2z/z2PN2z-sR,Lz-sR,N2z-sA,Lz-sA,N2z-sO2,Lz,
NO3zD=1/ΔσN2,O2d/dz lnPN2z/PO2z,
ΔNO3s=1/ΔzσO3λL+σO3λN22/PN2z1/2,
ΔNO3D=1/Δz×ΔσN2,O22/PN2z+2/PO2z1/2.
ΔNO3D/ΔNO3S2σO3λL+σO3λN2/ΔσN2,O2=23.
ΔNO3T=ΔNO3S+1/σO3λL+σO3λN2×ΔsA,Lz+ΔsA,N2z,
εS*=ΔNO3T/NO3S,
ΔNO3T=ΔNO3S+1/σO3λL+σO3λN2×sA,LλN2/λL-λL/λN2

Metrics