Abstract

We analyze and demonstrate the three-dimensional shifting selectivity of volume holograms based on random phase encoding with ground glass. Under weak coupling, the diffraction characteristic is caused by the phase difference between the reference and the reading light. We find that the shifting selectivity is different for different shifting directions, which include laterally horizontal, laterally vertical, and longitudinal directions. The shifting selectivity depends on the diameter of the region of illumination on the random phase plate, the thickness of the hologram, and the distance between them.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
    [CrossRef]
  2. D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 23, 70–76 (1995).
    [CrossRef]
  3. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966).
    [CrossRef] [PubMed]
  4. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  5. C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
    [CrossRef]
  6. J. T. LaMacchia, D. L. White, “Coded multiple exposure holograms,” Appl. Opt. 7, 91–94 (1968).
    [CrossRef] [PubMed]
  7. C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1509–1520 (1996).
    [CrossRef]
  8. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
    [CrossRef] [PubMed]
  9. F. T. S. Yu, M. Wen, S. Yin, C. M. Uang, “Submicrometer displacement sensing using inner-product multimode fiber speckle fields,” Appl. Opt. 32, 4685–4689 (1993).
    [CrossRef] [PubMed]
  10. H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 62, 2191–2193 (1993).
    [CrossRef]
  11. V. B. Markov, Y. N. Denisyuk, R. Amezquita, “3-D speckle-shift hologram and its storage capacity,” Opt. Memory Neural Netw. 6, 91–98 (1997).
  12. V. B. Markov, “Spatial-angular selectivity of 3-D speckle-wave holograms and information storage,” J. Imaging Sci. Technol. 41, 383–388 (1997).
  13. V. Markov, J. Millerd, J. Trolinger, M. Norrie, “Multilayer volume holographic optical memory,” Opt. Lett. 24, 265–267 (1999).
    [CrossRef]
  14. P. Réfrégier, B. Javidi, “Optical image encryption using input and Fourier plane random phase encoding,” Opt. Lett. 20, 767–769 (1995).
    [CrossRef]
  15. W. C. Su, C. C. Sun, B. Wang, A. E. T. Chiou, “Encryption-selectable optical storage in LiNbO3,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 91–99 (1999).
  16. O. Matoba, B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999).
    [CrossRef]
  17. G. Unnikrishnan, J. Joseph, K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37, 8181–8186 (1998).
    [CrossRef]
  18. B. Wang, C. C. Sun, A. E. T. Chiou, “Shift tolerance of a double random phase encryption system,” Appl. Opt. 39, 4788–4793 (2000).
    [CrossRef]
  19. C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction sensitivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
    [CrossRef]
  20. G. Barbastathis, M. Levene, D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
    [CrossRef] [PubMed]
  21. C. C. Sun, W. C. Su, Y. L. Lin, Y. Ouyang, S. P. Yeh, B. Wang, “Three dimensional shifting sensitivity of a volume hologram with spherical wave recording,” Opt. Mem. Neural Netw. 8, 229–236 (1999).

2000 (2)

C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction sensitivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

B. Wang, C. C. Sun, A. E. T. Chiou, “Shift tolerance of a double random phase encryption system,” Appl. Opt. 39, 4788–4793 (2000).
[CrossRef]

1999 (3)

C. C. Sun, W. C. Su, Y. L. Lin, Y. Ouyang, S. P. Yeh, B. Wang, “Three dimensional shifting sensitivity of a volume hologram with spherical wave recording,” Opt. Mem. Neural Netw. 8, 229–236 (1999).

V. Markov, J. Millerd, J. Trolinger, M. Norrie, “Multilayer volume holographic optical memory,” Opt. Lett. 24, 265–267 (1999).
[CrossRef]

O. Matoba, B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999).
[CrossRef]

1998 (1)

1997 (2)

V. B. Markov, Y. N. Denisyuk, R. Amezquita, “3-D speckle-shift hologram and its storage capacity,” Opt. Memory Neural Netw. 6, 91–98 (1997).

V. B. Markov, “Spatial-angular selectivity of 3-D speckle-wave holograms and information storage,” J. Imaging Sci. Technol. 41, 383–388 (1997).

1996 (2)

C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1509–1520 (1996).
[CrossRef]

G. Barbastathis, M. Levene, D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
[CrossRef] [PubMed]

1995 (3)

1994 (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

1993 (2)

H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 62, 2191–2193 (1993).
[CrossRef]

F. T. S. Yu, M. Wen, S. Yin, C. M. Uang, “Submicrometer displacement sensing using inner-product multimode fiber speckle fields,” Appl. Opt. 32, 4685–4689 (1993).
[CrossRef] [PubMed]

1991 (1)

C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

1968 (1)

1966 (1)

1963 (1)

Amezquita, R.

V. B. Markov, Y. N. Denisyuk, R. Amezquita, “3-D speckle-shift hologram and its storage capacity,” Opt. Memory Neural Netw. 6, 91–98 (1997).

Barbastathis, G.

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Chang, J. Y.

C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1509–1520 (1996).
[CrossRef]

Chang, M. W.

C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1509–1520 (1996).
[CrossRef]

Chang, W.

C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1509–1520 (1996).
[CrossRef]

Chiou, A. E. T.

B. Wang, C. C. Sun, A. E. T. Chiou, “Shift tolerance of a double random phase encryption system,” Appl. Opt. 39, 4788–4793 (2000).
[CrossRef]

W. C. Su, C. C. Sun, B. Wang, A. E. T. Chiou, “Encryption-selectable optical storage in LiNbO3,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 91–99 (1999).

Denisyuk, Y. N.

V. B. Markov, Y. N. Denisyuk, R. Amezquita, “3-D speckle-shift hologram and its storage capacity,” Opt. Memory Neural Netw. 6, 91–98 (1997).

Denz, C.

C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Javidi, B.

Jin, S. K.

H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 62, 2191–2193 (1993).
[CrossRef]

Joseph, J.

Kozma, A.

LaMacchia, J. T.

Lee, H.

H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 62, 2191–2193 (1993).
[CrossRef]

Leith, E. N.

Levene, M.

Lin, Y. L.

C. C. Sun, W. C. Su, Y. L. Lin, Y. Ouyang, S. P. Yeh, B. Wang, “Three dimensional shifting sensitivity of a volume hologram with spherical wave recording,” Opt. Mem. Neural Netw. 8, 229–236 (1999).

Markov, V.

Markov, V. B.

V. B. Markov, Y. N. Denisyuk, R. Amezquita, “3-D speckle-shift hologram and its storage capacity,” Opt. Memory Neural Netw. 6, 91–98 (1997).

V. B. Markov, “Spatial-angular selectivity of 3-D speckle-wave holograms and information storage,” J. Imaging Sci. Technol. 41, 383–388 (1997).

Marks, J.

Massey, N.

Matoba, O.

Millerd, J.

Mok, F.

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 23, 70–76 (1995).
[CrossRef]

Norrie, M.

Ouyang, Y.

C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction sensitivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

C. C. Sun, W. C. Su, Y. L. Lin, Y. Ouyang, S. P. Yeh, B. Wang, “Three dimensional shifting sensitivity of a volume hologram with spherical wave recording,” Opt. Mem. Neural Netw. 8, 229–236 (1999).

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Psaltis, D.

Réfrégier, P.

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Singh, K.

Su, W. C.

C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction sensitivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

C. C. Sun, W. C. Su, Y. L. Lin, Y. Ouyang, S. P. Yeh, B. Wang, “Three dimensional shifting sensitivity of a volume hologram with spherical wave recording,” Opt. Mem. Neural Netw. 8, 229–236 (1999).

W. C. Su, C. C. Sun, B. Wang, A. E. T. Chiou, “Encryption-selectable optical storage in LiNbO3,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 91–99 (1999).

Sun, C. C.

C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction sensitivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

B. Wang, C. C. Sun, A. E. T. Chiou, “Shift tolerance of a double random phase encryption system,” Appl. Opt. 39, 4788–4793 (2000).
[CrossRef]

C. C. Sun, W. C. Su, Y. L. Lin, Y. Ouyang, S. P. Yeh, B. Wang, “Three dimensional shifting sensitivity of a volume hologram with spherical wave recording,” Opt. Mem. Neural Netw. 8, 229–236 (1999).

C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1509–1520 (1996).
[CrossRef]

W. C. Su, C. C. Sun, B. Wang, A. E. T. Chiou, “Encryption-selectable optical storage in LiNbO3,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 91–99 (1999).

Trolinger, J.

Tsou, R. H.

C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1509–1520 (1996).
[CrossRef]

Uang, C. M.

Unnikrishnan, G.

Upatnieks, J.

van Heerden, P. J.

Wang, B.

B. Wang, C. C. Sun, A. E. T. Chiou, “Shift tolerance of a double random phase encryption system,” Appl. Opt. 39, 4788–4793 (2000).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction sensitivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

C. C. Sun, W. C. Su, Y. L. Lin, Y. Ouyang, S. P. Yeh, B. Wang, “Three dimensional shifting sensitivity of a volume hologram with spherical wave recording,” Opt. Mem. Neural Netw. 8, 229–236 (1999).

W. C. Su, C. C. Sun, B. Wang, A. E. T. Chiou, “Encryption-selectable optical storage in LiNbO3,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 91–99 (1999).

Wen, M.

White, D. L.

Yeh, S. P.

C. C. Sun, W. C. Su, Y. L. Lin, Y. Ouyang, S. P. Yeh, B. Wang, “Three dimensional shifting sensitivity of a volume hologram with spherical wave recording,” Opt. Mem. Neural Netw. 8, 229–236 (1999).

Yin, S.

Yu, F. T. S.

Appl. Opt. (8)

Appl. Phys. Lett. (1)

H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 62, 2191–2193 (1993).
[CrossRef]

J. Imaging Sci. Technol. (1)

V. B. Markov, “Spatial-angular selectivity of 3-D speckle-wave holograms and information storage,” J. Imaging Sci. Technol. 41, 383–388 (1997).

Opt. Commun. (2)

C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction sensitivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

Opt. Lett. (3)

Opt. Mem. Neural Netw. (1)

C. C. Sun, W. C. Su, Y. L. Lin, Y. Ouyang, S. P. Yeh, B. Wang, “Three dimensional shifting sensitivity of a volume hologram with spherical wave recording,” Opt. Mem. Neural Netw. 8, 229–236 (1999).

Opt. Memory Neural Netw. (1)

V. B. Markov, Y. N. Denisyuk, R. Amezquita, “3-D speckle-shift hologram and its storage capacity,” Opt. Memory Neural Netw. 6, 91–98 (1997).

Opt. Quantum Electron. (1)

C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1509–1520 (1996).
[CrossRef]

Sci. Am. (1)

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 23, 70–76 (1995).
[CrossRef]

Science (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Other (1)

W. C. Su, C. C. Sun, B. Wang, A. E. T. Chiou, “Encryption-selectable optical storage in LiNbO3,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, F. T. Yu, S. Yin, eds., Proc. SPIE3801, 91–99 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Ground glass can be decomposed into numerous point sources. Each point source generates a spherical wave with a specific initial phase.

Fig. 2
Fig. 2

A point source that laterally shifted a distance Δ from its original position in the writing process is used for reading a hologram written by the signal and the same point source at the original position.

Fig. 3
Fig. 3

Theoretical calculation of the shifting tolerance for values of z 0, d, and l as shown. Normalized diffraction intensity versus (a) horizontal shifting, (b) vertical shifting, and (c) longitudinal shifting of the ground glass.

Fig. 4
Fig. 4

Schematic diagram of the experimental setup: M’s, mirrors; L’s, lenses; PBS, polarization beam splitter; GG, ground glass; SF, spatial filter; 1/2 λ’s, half-wave plates.

Fig. 5
Fig. 5

Experimental measurements of horizontal shifting tolerance. Normalized diffraction intensity versus shifting of the ground glass for values of z 0 and d as shown.

Fig. 6
Fig. 6

Experimental measurements of vertical shifting tolerance. Normalized diffraction intensity versus shifting of the ground glass for values of z 0 and d as shown.

Fig. 7
Fig. 7

Experimental measurements and theoretical calculations of longitudinal shifting tolerance. Normalized diffraction intensity versus shifting of the ground glass for values of z 0 and d as shown. The filled points in block A represent the experimental measurement; the lines in block B represent the theoretical calculation.

Fig. 8
Fig. 8

Theoretical calculations based on relation (10). The parameters in the calculations for (a) and (b) correspond to those in the experiments for Figs. 5(a) and 5(b), respectively.

Fig. 9
Fig. 9

Theoretical calculations based on relation (13). The parameters in the calculations for (a) and (b) correspond to those in the experiments for Figs. 6(a) and 6(b), respectively.

Fig. 10
Fig. 10

Schematic diagram of the 3-D holographic storage and encryption system: GG, ground glass.

Fig. 11
Fig. 11

FWHM of longitudinal selectivity Δz s versus the distance between the ground glass and the hologram in the longitudinal direction (z 0).

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Wx3, y3=-d/2d/2-d/2d/2 A expjϕx1, y1×expjkr1dx1dy1,
D=-l/2l/2-d/2d/2-d/2d/2-d/2d/2-d/2d/2 |A|2B expjϕx2, y2-jϕx1, y1×expjkr2-r1dx1dy1dx2dy2dx3,
D  |A|2Bld2,
Δ=Δx2+Δy2+Δz21/2,
Δx=x2-x1,Δy=y2-y1,Δz=z2-z1.
Δx=x2-x1,Δy=y2-y1,Δz=0.
D=-l/2l/2-d/2d/2-d/2d/2 |A|2Bld2 expjk2z0x3-x1-Δx2+y3-y1-Δy2-x3-x12-y3-y12dx1dy1dx3.
D=|A|2Bld2 expjkΔx2+Δy22z0exp-jkΔyy3z0×sincΔxdλz0sincΔxlλz0sincΔydλz0.
I  |D|2=|A|2Bld22 sinc2Δxdλz0×sinc2Δxlλz0sinc2Δydλz0.
I  |D|2=|A|2Bld22 sinc2Δxdλz0sinc2Δxlλz0.
Δxd1=λz0d=λNAd,
Δxl1=λz0l=λNAl,
I  |D|2=|A|2Bld22 sinc2Δyd/λz0.
Δyd1=λz0/d.
Δx=0,Δy=0,Δz=z2-z1.
D=|A|2B -l/2l/2-d/2d/2-d/2d/2z02+y3-y12+x3-x12-1/2z0+Δz2+y3-y12+x3-x12-1/2expjkz0+Δz2+y3-y12+x3-x121/2exp-jkz02+y3-y12+x3-x121/2dx1dy1dx3.
D=|A|2B x3=-l/2l/2x1=-d/2d/2y1=-d/2d/2z02+y3-y12+x3-x12-1/2z0+Δz2+y3-y12+x3-x12-1/2 expjkz0+Δz2+y3-y12+x3-x121/2exp-jkz02+y3-y12+x3-x121/2.
Δxs=2Δxd1 or 2Δxl1,Δys=2Δyd1,Δzs=2Δzd.

Metrics