Abstract

We present a compact, fast, and versatile fiber-optic probe system for real-time determination of tissue optical properties from spatially resolved continuous-wave diffuse reflectance measurements. The system collects one set of reflectance data from six source–detector distances at four arbitrary wavelengths with a maximum overall sampling rate of 100 Hz. Multivariate calibration techniques based on two-dimensional polynomial fitting are employed to extract and display the absorption and reduced scattering coefficients in real-time mode. The four wavelengths of the current configuration are 660, 785, 805, and 974 nm, respectively. Cross-validation tests on a 6 × 7 calibration matrix of Intralipid–dye phantoms showed that the mean prediction error at, e.g., 785 nm was 2.8% for the absorption coefficient and 1.3% for the reduced scattering coefficient. The errors are relative to the range of the optical properties of the phantoms at 785 nm, which were 0–0.3/cm for the absorption coefficient and 6–16/cm for the reduced scattering coefficient. Finally, we also present and discuss results from preliminary skin tissue measurements.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Welch, M. J. C. van Gemert, M. W. Star, B. C. Wilson, “Overview of tissue optics,” Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 2.
  2. J. W. Feather, D. J. Ellis, G. Leslie, “A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin,” Phys. Med. Biol. 33, 711–722 (1988).
    [CrossRef] [PubMed]
  3. S. L. Jacques, “Reflectance spectroscopy with optical fiber devices, and transcutaneous bilirubinometers,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi, eds., Vol. E325 of NATO ASI Series (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 83–94.
  4. M. A. Franceschini, E. Gratton, S. Fantini, “Noninvasive optical method of measuring tissue and arterial saturation: an application to absolute pulse oximetry of the brain,” Opt. Lett. 24, 829–831 (1999).
    [CrossRef]
  5. S. L. Jacques, “Origins of tissue optical properties in the UVA, Visible, and NIR regions,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), 364–369.
  6. A. H. Hielscher, J. R. Mourant, I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).
    [CrossRef] [PubMed]
  7. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
    [CrossRef]
  8. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, C. J. Sandahl, H. Orskov, M. Essenpreis, R. G. Schmelzeisen, D. Bocker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
    [CrossRef] [PubMed]
  9. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  10. S. Andersson-Engels, R. Berg, A. Persson, S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
    [CrossRef] [PubMed]
  11. B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
    [CrossRef]
  12. S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
    [CrossRef]
  13. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  14. P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. De-Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement. I. Comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
    [CrossRef]
  15. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
    [CrossRef] [PubMed]
  16. R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
    [CrossRef] [PubMed]
  17. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [CrossRef] [PubMed]
  18. M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).
    [CrossRef] [PubMed]
  19. J. S. Dam, P. E. Andersen, T. Dalgaard, P. E. Fabricius, “Determination of tissue optical properties from diffuse reflectance profiles by multivariate calibration,” Appl. Opt. 37, 772–778 (1998).
    [CrossRef]
  20. R. M. Doornbos, L. Lang, R. Alders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
    [CrossRef] [PubMed]
  21. T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. Tromberg, S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with a noncontact Fourier transform hyperspectral imaging,” Appl. Opt. 39, 6487–6497.
  22. L. V. Wang, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Methods Program Biomed. 61, 163–170 (2000).
    [CrossRef]
  23. L. H. Wang, S. L. Jacques, L. Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Program Biomed. 47, 131–146 (1995).
    [CrossRef]
  24. T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
    [CrossRef] [PubMed]
  25. H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980), Vols. I and II.
  26. R. Graff, J. G. Aarnoudse, F. F. M. de MulHenk, W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
    [CrossRef]
  27. J. S. Dam, T. Dalgaard, P. E. Fabricius, S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39, 1202–1209 (2000).
    [CrossRef]
  28. W. F. Cheong, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  29. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  30. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
    [CrossRef]
  31. S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
    [CrossRef] [PubMed]
  32. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source–detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
    [CrossRef] [PubMed]
  33. G. Kumar, “Optimal probe geometry for near-infrared spectroscopy of biological tissue,” Appl. Opt. 36, 2286–2293 (1997).
    [CrossRef] [PubMed]
  34. C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
    [CrossRef] [PubMed]
  35. F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues,” Appl. Opt. 28, 2297–2303 (1989).
    [CrossRef] [PubMed]

2000 (2)

L. V. Wang, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Methods Program Biomed. 61, 163–170 (2000).
[CrossRef]

J. S. Dam, T. Dalgaard, P. E. Fabricius, S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39, 1202–1209 (2000).
[CrossRef]

1999 (2)

R. M. Doornbos, L. Lang, R. Alders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

M. A. Franceschini, E. Gratton, S. Fantini, “Noninvasive optical method of measuring tissue and arterial saturation: an application to absolute pulse oximetry of the brain,” Opt. Lett. 24, 829–831 (1999).
[CrossRef]

1998 (4)

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[CrossRef]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

J. S. Dam, P. E. Andersen, T. Dalgaard, P. E. Fabricius, “Determination of tissue optical properties from diffuse reflectance profiles by multivariate calibration,” Appl. Opt. 37, 772–778 (1998).
[CrossRef]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

1997 (6)

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source–detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
[CrossRef] [PubMed]

G. Kumar, “Optimal probe geometry for near-infrared spectroscopy of biological tissue,” Appl. Opt. 36, 2286–2293 (1997).
[CrossRef] [PubMed]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).
[CrossRef] [PubMed]

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, C. J. Sandahl, H. Orskov, M. Essenpreis, R. G. Schmelzeisen, D. Bocker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
[CrossRef] [PubMed]

A. H. Hielscher, J. R. Mourant, I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).
[CrossRef] [PubMed]

1996 (2)

1995 (3)

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. De-Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement. I. Comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

L. H. Wang, S. L. Jacques, L. Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Program Biomed. 47, 131–146 (1995).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

1994 (1)

S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[CrossRef] [PubMed]

1993 (2)

R. Graff, J. G. Aarnoudse, F. F. M. de MulHenk, W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
[CrossRef]

S. Andersson-Engels, R. Berg, A. Persson, S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
[CrossRef] [PubMed]

1992 (3)

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef]

1991 (1)

1990 (1)

W. F. Cheong, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989 (2)

1988 (1)

J. W. Feather, D. J. Ellis, G. Leslie, “A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin,” Phys. Med. Biol. 33, 711–722 (1988).
[CrossRef] [PubMed]

Aarnoudse, J. G.

R. Graff, J. G. Aarnoudse, F. F. M. de MulHenk, W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
[CrossRef]

Alders, R.

R. M. Doornbos, L. Lang, R. Alders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Andersen, P. E.

Andersson-Engels, S.

Barbieri, B.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Bays, R.

Berg, R.

Berger, M.

Bevilacqua, F.

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. De-Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement. I. Comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. Tromberg, S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with a noncontact Fourier transform hyperspectral imaging,” Appl. Opt. 39, 6487–6497.

Bigio, I. J.

Bocker, D.

Bolin, F. P.

Boyer, J.

Braichotte, D.

Bruulsema, J. T.

Chance, B.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Cheong, W. F.

W. F. Cheong, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[CrossRef] [PubMed]

Cross, F. W.

R. M. Doornbos, L. Lang, R. Alders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Dalgaard, T.

Dam, J. S.

de MulHenk, F. F. M.

R. Graff, J. G. Aarnoudse, F. F. M. de MulHenk, W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
[CrossRef]

De-Haller, E. B.

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. De-Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement. I. Comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

Delpy, D. T.

S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[CrossRef] [PubMed]

Depeursinge, C.

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. De-Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement. I. Comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

Doornbos, R. M.

R. M. Doornbos, L. Lang, R. Alders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Eick, A. A.

Ellis, D. J.

J. W. Feather, D. J. Ellis, G. Leslie, “A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin,” Phys. Med. Biol. 33, 711–722 (1988).
[CrossRef] [PubMed]

Essenpreis, M.

Fabricius, P. E.

Fantini, S.

M. A. Franceschini, E. Gratton, S. Fantini, “Noninvasive optical method of measuring tissue and arterial saturation: an application to absolute pulse oximetry of the brain,” Opt. Lett. 24, 829–831 (1999).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Farrell, T. J.

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, C. J. Sandahl, H. Orskov, M. Essenpreis, R. G. Schmelzeisen, D. Bocker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

Feather, J. W.

J. W. Feather, D. J. Ellis, G. Leslie, “A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin,” Phys. Med. Biol. 33, 711–722 (1988).
[CrossRef] [PubMed]

Ference, R. J.

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef]

Foster, T. H.

Franceschini, M. A.

M. A. Franceschini, E. Gratton, S. Fantini, “Noninvasive optical method of measuring tissue and arterial saturation: an application to absolute pulse oximetry of the brain,” Opt. Lett. 24, 829–831 (1999).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Freyer, J. P.

Fuselier, T.

Graff, R.

R. Graff, J. G. Aarnoudse, F. F. M. de MulHenk, W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
[CrossRef]

Gratton, E.

M. A. Franceschini, E. Gratton, S. Fantini, “Noninvasive optical method of measuring tissue and arterial saturation: an application to absolute pulse oximetry of the brain,” Opt. Lett. 24, 829–831 (1999).
[CrossRef]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Hayward, J. E.

Heinemann, L.

Hibst, R.

Hielscher, A. H.

Hull, E. L.

Jack, D. A.

Jacques, S. L.

L. H. Wang, S. L. Jacques, L. Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Program Biomed. 47, 131–146 (1995).
[CrossRef]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef]

S. L. Jacques, “Reflectance spectroscopy with optical fiber devices, and transcutaneous bilirubinometers,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi, eds., Vol. E325 of NATO ASI Series (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 83–94.

S. L. Jacques, “Origins of tissue optical properties in the UVA, Visible, and NIR regions,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), 364–369.

Jentink, W.

R. Graff, J. G. Aarnoudse, F. F. M. de MulHenk, W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
[CrossRef]

Johnson, T. M.

Kienle, A.

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Koschinsky, T.

Kumar, G.

Lang, L.

R. M. Doornbos, L. Lang, R. Alders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Leslie, G.

J. W. Feather, D. J. Ellis, G. Leslie, “A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin,” Phys. Med. Biol. 33, 711–722 (1988).
[CrossRef] [PubMed]

Lilge, L.

Maier, J. S.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Marquet, P.

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. De-Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement. I. Comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

Matcher, S. J.

S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[CrossRef] [PubMed]

Miller, H. D.

Moes, C. J. M.

Monnier, P.

Mourant, J. R.

Nichols, M. G.

Orskov, H.

Patterson, M. S.

Persson, A.

Pham, T. H.

Prahl, S. A.

Preuss, L. E.

Ramanujam, N.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Robert, D.

Sandahl, C. J.

Savary, J. F.

Schmelzeisen, R. G.

Shen, D.

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

Spott, T.

Star, M. W.

J. Welch, M. J. C. van Gemert, M. W. Star, B. C. Wilson, “Overview of tissue optics,” Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 2.

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef]

Steiner, R.

Sterenborg, H. J. C. M.

R. M. Doornbos, L. Lang, R. Alders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Svanberg, S.

Taylor, R. C.

Tromberg, B.

van de Hulst, H. C.

H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980), Vols. I and II.

van den Bergh, H.

van Gemert, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

J. Welch, M. J. C. van Gemert, M. W. Star, B. C. Wilson, “Overview of tissue optics,” Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 2.

van Marle, J.

van Staveren, H. J.

Wagnieres, G.

Walker, S. A.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Wang, L. H.

L. H. Wang, S. L. Jacques, L. Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Program Biomed. 47, 131–146 (1995).
[CrossRef]

Wang, L. V.

L. V. Wang, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Methods Program Biomed. 61, 163–170 (2000).
[CrossRef]

Welch, A. J.

W. F. Cheong, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Welch, J.

J. Welch, M. J. C. van Gemert, M. W. Star, B. C. Wilson, “Overview of tissue optics,” Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 2.

Wilson, B.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

J. Welch, M. J. C. van Gemert, M. W. Star, B. C. Wilson, “Overview of tissue optics,” Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 2.

Zheng, L. Q.

L. H. Wang, S. L. Jacques, L. Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Program Biomed. 47, 131–146 (1995).
[CrossRef]

Appl. Opt. (14)

A. H. Hielscher, J. R. Mourant, I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).
[CrossRef] [PubMed]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
[CrossRef] [PubMed]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).
[CrossRef] [PubMed]

J. S. Dam, P. E. Andersen, T. Dalgaard, P. E. Fabricius, “Determination of tissue optical properties from diffuse reflectance profiles by multivariate calibration,” Appl. Opt. 37, 772–778 (1998).
[CrossRef]

T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. Tromberg, S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with a noncontact Fourier transform hyperspectral imaging,” Appl. Opt. 39, 6487–6497.

J. S. Dam, T. Dalgaard, P. E. Fabricius, S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39, 1202–1209 (2000).
[CrossRef]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source–detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
[CrossRef] [PubMed]

G. Kumar, “Optimal probe geometry for near-infrared spectroscopy of biological tissue,” Appl. Opt. 36, 2286–2293 (1997).
[CrossRef] [PubMed]

F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues,” Appl. Opt. 28, 2297–2303 (1989).
[CrossRef] [PubMed]

Comput. Methods Program Biomed. (2)

L. V. Wang, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Methods Program Biomed. 61, 163–170 (2000).
[CrossRef]

L. H. Wang, S. L. Jacques, L. Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Program Biomed. 47, 131–146 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. F. Cheong, A. J. Welch, “A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Opt. Eng. (3)

P. Marquet, F. Bevilacqua, C. Depeursinge, E. B. De-Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled-device array measurement. I. Comparison between experiments and simulations,” Opt. Eng. 34, 2055–2063 (1995).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

R. Graff, J. G. Aarnoudse, F. F. M. de MulHenk, W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–252 (1993).
[CrossRef]

Opt. Lett. (3)

Phys. Med. Biol. (5)

J. W. Feather, D. J. Ellis, G. Leslie, “A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin,” Phys. Med. Biol. 33, 711–722 (1988).
[CrossRef] [PubMed]

R. M. Doornbos, L. Lang, R. Alders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[CrossRef] [PubMed]

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Other (4)

S. L. Jacques, “Reflectance spectroscopy with optical fiber devices, and transcutaneous bilirubinometers,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, R. Pratesi, eds., Vol. E325 of NATO ASI Series (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 83–94.

S. L. Jacques, “Origins of tissue optical properties in the UVA, Visible, and NIR regions,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), 364–369.

J. Welch, M. J. C. van Gemert, M. W. Star, B. C. Wilson, “Overview of tissue optics,” Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 2.

H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980), Vols. I and II.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of the fiber-optic system for R(r) measurements applied in this paper. (1) Probe head with source and detector optical fibers mounted in a rotational symmetric configuration. (2) Handheld box with silicon photodiodes and amplifier electronics. (3) Stationary box containing a digital signal processing (DSP) board and the light sources in the form of diode lasers. (4) External temperature controller to maintain a constant temperature of the diode lasers. (5) Laptop PC to analyze, display, and store the acquired R(r) data.

Fig. 2
Fig. 2

Optical property spectra of the applied Intralipid–ink phantoms. (a) Mean of μ a as a function of the wavelength λ for the six phantoms with 1% ink concentration but varying Intralipid concentrations. (b) Mean of μ s ′ as a function of the wavelength for the seven phantoms with 1% Intralipid concentration but varying ink concentrations. The error bars of the spectra in panels (a) and (b) show the standard deviations of μ a and μ s ′, respectively. The circles indicate the values at the four wavelengths of the probe. The two spectra were measured and calculated with an integrating sphere setup in conjunction with the MPR method.

Fig. 3
Fig. 3

Surface plots of R(r) at r 1 = 0.6 mm and r 2 = 7.8 mm as a function of μ a and μ s ′. Panels (a) and (b) show the R(r) plots of the 6 × 7 Intralipid phantoms at 785 nm, and panels (c) and (d) show the corresponding R(r) plots based on Monte Carlo simulations. Note that the arbitrary intensity units of measured R(r) plots have been scaled in order to compare them with the simulated plots.

Fig. 4
Fig. 4

Monte Carlo simulated R(r) data for various combinations of μ a and μ s ′ within ranges typical for skin tissue at 785 nm. In (a) and (b), μ s ′ is kept constant at 6 cm-1 and 16 cm-1, respectively while μ a is varied within the range 0–0.3 cm-1. In (c) and (d) μ a is kept constant at 0 cm-1 and 0.3 cm-1, respectively, whereas μ s ′ is varied within the range 6–16 cm-1.

Fig. 5
Fig. 5

Various numerical tests on Monte Carlo simulated R(r) data. Panels (a) and (b) show the mean prediction errors of μ a and μ s ′, respectively. Panels (c) and (d) show the corresponding maximum prediction errors. From below: (I) cross validation on a basic 6 × 7 calibration matrix (106 photons) corresponding to phantom measurements at 785 nm, (II) predictions on data with random μ a and μ s ′ distribution, (III) cross validation on 6 × 7 matrix generated with 1 × 107 photons, (IV) cross validation on a high-resolution 11 × 13 calibration matrix, (V) cross validation on the basic 6 × 7 calibration matrix with principal component analysis.

Fig. 6
Fig. 6

Mean optical properties at all four wavelengths determined from R(r) measurements on the forearm of five healthy individuals. The vertical bars indicate the valid range of the applied calibration model at various distances and wavelengths, and the circles indicate the mean measured R(r) of the five individuals. At each of the four wavelengths, the stated values of μ a and μ s ′ were determined on the basis of the mean R(r) values at r 1 = 0.6 mm and r 2 = 7.8 mm.

Tables (2)

Tables Icon

Table 1 Optical Property Ranges of 6×7 Matrix of Intralipid–Ink Phantoms Determined from Integrating Sphere Measurements

Tables Icon

Table 2 Leave-One-Out Cross-Validation Prediction Tests Based on Phantom Measurementsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R1,fitμa, μs, m=a0+a1μa+a2μa2+ amμam×b0+b1μs2+ bmμsm, R2,fitμa, μs, m=c0+c1μa+c2μa2+ cmμam×d0+d1μs2+ dmμsm,
Fμa, μs=R1,fit-R1,meas, Gμa, μs=R2,fit-R2,meas.
-Fμa,k, μs,kGμa,k, μs,k=FμaFμsGμaGμsha,khs,kμa,k+1μs,k+1=μa,kμs,k+ha,khs,kk=0, 1, 2, 3,  ,

Metrics